求教时间序列AR模型做预测 MATLAB

2024-05-06 13:43

1. 求教时间序列AR模型做预测 MATLAB

如何用MATLAB对时间序列AR模型做预测?
第一步,使用load命令加载数据
第二步,使用ar函数,确定时间序列AR模型
第三步,确定预测时间范围指定为K个样本。K=100。
第四步,使用forecast函数,绘制给定时间范围内的预测系统响应。
实现代码,(供参考)
clc
%Forecast Response of Time Series Model
%时间序列模型的预测响应
load iddata9 z9
past_data = z9.OutputData(1:50);
model = ar(z9,4);
K = 100;
forecast(model,'r--',past_data,K);
运行结果


求教时间序列AR模型做预测 MATLAB

2. SPSS时间序列 应用时间序列模型

SPSS时间序列:应用时间序列模型
一、应用时间序列模型(分析-预测-应用模型)
“应用时间序列模型”过程从外部文件加载现有的时间序列模型,并将它们应用于活动数据集。使用此过程,可以在不重新建立模型的情况下获得其新数据或修订数据可用的序列的预测值。模型是使用时间序列建模器过程生成的。
1、示例。假定您是一家大型零售店的库存经理,您负责管理5,000种产品。您曾使用专家建模器创建了一些模型,用来预测每种产品在未来三个月的销售情况。您的数据仓库每个月都会使用实际销售数据进行刷新,您希望使用这些数据来生成每月更新预测值。通过?应用时间序列模型?过程,您可以使用原有模型,然后只需重新估计模型参数以说明新数据即可实现此预测。
2、统计量。拟合优度测量:平稳的R方、R方(R2)、均方根误差(RMSE)、平均绝对误差(MAE)、平均绝对误差百分比(MAPE)、最大绝对误差(MaxAE)、最大绝对误差百分比(MaxAPE)、标准化BIC准则。残差:自相关函数、偏自相关函数、Ljung-Box Q。图。跨所有模型的摘要图:平稳的R方、R方(R2)、均方根误差(RMSE)、平均绝对误差(MAE)、平均绝对误差百分比(MAPE)、最大绝对误差(MaxAE)、最大绝对误差百分比(MaxAPE)、标准化BIC准则的直方图;残差自相关和偏自相关的箱图。单个模型的结果:预测值、拟合值、观察值、置信区间的上限和下限、残差自相关和偏自相关。
二、统计量(分析-预测-应用模型-统计量)
1、比较模型的统计量。这组选项控制如何显示包含所有模型的统计量的表。每个选项分别生成单独的表。可以选择以下选项中的一个或多个:
1.1、拟合优度。固定的R方、R方、均方根误差、平均绝对误差百分比、平均绝对误差、最大绝对误差百分比、最大绝对误差以及标准化的BIC准则的摘要统计量和百分位数表。
1.2、残差自相关函数(ACF)。所有估计模型中残差的自相关摘要统计和百分位表。此表只在重新估计模型参数时可用(?模型?选项卡上的根据数据重新估计)。
1.3、残差部分自相关函数(PACF)。所有估计模型中残差的部分自相关摘要统计和百分位表。此表只在重新估计模型参数时可用(?模型?选项卡上的根据数据重新估计)。
2、个别模型的统计量。这组选项控制如何显示包含每个模型的详细信息的表。每个选项分别生成单独的表。可以选择以下选项中的一个或多个:
2.1、参数估计。显示每个模型的参数估计值的表。为指数平滑法和ARIMA模型显示不同的表。如果存在离群值,则它们的参数估计值也将在单独的表中显示。
2.2、残差自相关函数(ACF)。按每个估计模型的延迟显示残差自相关表。该表包含自相关的置信区间。此表只在重新估计模型参数时可用(?模型?选项卡上的根据数据重新估计)。
1.3、残差部分自相关函数(PACF)。按每个估计模型的延迟显示残差部分自相关表。该表包含部分自相关的置信区间。此表只在重新估计模型参数时可用(?模型?选项卡上的根据数据重新估计)。
3、显示预测值。显示每个模型的模型预测值和置信区间的表。
三、图表(分析-预测-应用模型-图表)
序列。选择(选中)此选项可获取每个模型的预测值的图。只有在重新估计模型参数时(?模型?选项卡上的根据数据重新估计),观察值、拟合值、拟合值的置信区间以及自相关才可用。可以选择在图中包含以下一项或多项:
◎观察值。相依序列的观察值。
◎预测值。预测期的模型预测值。
◎拟合值。估计期的模型预测值。
◎预测值的置信区间。预测期的置信区间。
◎拟合值的置信区间。估计期的置信区间。
残差自相关函数(ACF)。显示每个估计模型的残差自相关图。
残差部分自相关函数(PACF)。显示每个估计模型的残差部分自相关图。
四、输出过滤(分析-预测-应用模型-输出过滤)
1、最佳拟合模型。选择(选中)此选项将在输出中包含最佳拟合模型。选择拟合优度测量并指定要包含的模型数。选择此选项不妨碍同时选择最差拟合模型。如果同时选择两者,则输出将由最差拟合模型和最佳拟合模型组成。
1.1、模型的固定数量。指定为n个最佳拟合模型显示结果。如果指定的数量超过模型的总数,则显示所有模型。
1.2、占模型总数的百分比。指定为其拟合优度值在所有模型的前n个百分比范围内的模型显示结果。
2、最差拟合模型。选择(选中)此选项将在输出中包含最差拟合模型。选择拟合优度测量并指定要包含的模型数。选择此选项不妨碍同时选择最佳拟合模型。如果同时选择两者,输出将由最佳拟合模型和最差拟合模型组成。
2.1、模型的固定数量。指定为n个最差拟合模型显示结果。如果指定的数量超过模型的总数,则显示所有模型。
2.2、占模型总数的百分比。指定为其拟合优度值在所有模型的后n个百分比范围内的模型显示结果。3、拟合优度。选择用于过滤模型的拟合优度测量。缺省值为固定的R方。

3. 如何对时间序列预测建模

时间序列分析是根据系统观测得到的时间序列数据,通过曲线拟合和参数估计来建立数学模型的理论和方法。
它一般采用曲线拟合和参数估计方法(如非线性最小二乘法)进行。时间序列分析常用在国民经济宏观控制、区域综合发展规划、经营管理、市场潜量预测、气象预报、水文预报、地震前兆预报、农作物病虫灾害预报、环境污染控制、生态平衡、天文学和海洋学等方面。

(一)根据时间序列的散点图、自相关函数和偏自相关函数图以ADF单位根检验其方差、趋势及其季节性变化规律,对序列的平稳性进行识别。一般来讲,经济运行的时间序列都不是平稳序列。
(二)对非平稳序列进行平稳化处理。如果数据序列是非平稳的,并存在一定的增长或下降趋势,则需要对数据进行差分处理,如果数据存在异方差,则需对数据进行技术处理,直到处理后的数据的自相关函数值和偏相关函数值无显著地异于零。
(三)根据时间序列模型的识别规则,建立相应的模型。若平稳序列的偏相关函数是截尾的,而自相关函数是拖尾的,可断定序列适合AR模型;若平稳序列的偏相关函数是拖尾的,而自相关函数是截尾的,则可断定序列适合MA模型;若平稳序列的偏相关函数和自相关函数均是拖尾的,则序列适合ARMA模型。
(四)进行参数估计,检验是否具有统计意义。
(五)进行假设检验,诊断残差序列是否为白噪声。
(六)利用已通过检验的模型进行预测分析。

如何对时间序列预测建模

4. SPSS-数据分析之时间序列分析

当数据与时间息息相关,常具有周期性的变化规律,此时,时间序列分析是一个很好的发现分析及预测其发展变化的统计方法,接下来简要分享统计分析软件SPSS中时间序列分析的操作。
  
 问:什么是时间序列?
  
 答:时间序列是时间间隔不变的情况下收集的不同时间点数据集合。
  
 问:那时间序列分析又是什么?
  
 答:时间序列分析是通过研究历史数据的发展变化规律来预测事物的未来发展的统计学方法。公司营业额、销售额,人口数量,股票等方面的变化预测皆可通过此统计方法。
  
 SPSS中的操作
  
 首先,对数据进行 预处理: 
  
 1.查看数据是否有缺失,若有,不便后续处理,则需进行替换缺失值。
  
 转换→替换缺失值→选择新变量→输入新变量名称、选择替换缺失值方法。
  
 
  
                                          
 
  
                                          
 2.定义日期
  
 数据→定义日期和时间
  
 
  
                                          
 
  
                                          
 3.平稳性检验(平稳性指的是期望不变,方差恒定,协方差不随时间改变)
  
 检验方法:时序图检验、自相关图检验等。可通过创建时间序列实现数据的平稳化
  
 转换→创建时间序列
  
 
  
                                          
 结果(例:运行中位数——跨度为1,则等于原数据)
  
 
  
                                          
 数据预处理后对数据进行分析研究——序列图、谱分析、自相关等。
  
 1.序列图:分析→时间序列预测→序列图→根据需要选择变量、时间轴标签等。
  
 
  
                                          
 
  
                                          
 结果(例):可观察数据的大致波动情况。
  
 
  
                                          
 2.谱分析:分析→时间序列预测→谱分析→根据需要选择变量、图表。
  
 
  
                                          
 结果(例)
  
 对于周期变化的数据,主要用于侦测系统隐含的周期或者节律行为;
  
 对于非周期的数据,主要用于揭示系统演化过程的自相关特征。
  
 
  
                                          
 3.自相关:分析→时间序列预测→自相关→选择变量及其他。
  
 
  
                                          
 结果:
  
 
  
                                          
 
  
                                          
 解读:直条高低代表自相关系数的大小,横轴1-16代表自相关的阶数,上下线之间是不具有统计学意义的,偏自相关是去除自相关系数的关联性传递性之后,用偏自相关系数考察剩余的相关性是否还存在。
  
 关于SPSS时间序列分析的简要介绍就结束啦!
  
  END 
  
 文 | FM

5. 时间序列分析模型——ARIMA模型

姓名:车文扬 学号:16020199006 
    
 【嵌牛导读】:什么是 ARIMA模型 
  
 【嵌牛鼻子】: ARIMA 
  
 【嵌牛提问】: ARIMA模型可以具体应用到什么地方? 
  
 【嵌牛正文】:
  
  一、研究目的 
  
 传统的经济计量方法是以经济理论为基础来描述变量关系的模型。但经济理论通常不足以对变量之间的动态联系提供一个严密的说明,而且内生变量既可以出现在方程的左端又可以出现在方程的右端使得估计和推断变得更加复杂。为了解决这些问题而出现了一种用非结构方法来建立各个变量之间关系的模型,如向量自回归模型(vector autoregression,VAR)和向量误差修正模型(vector error correction model,VEC)。
  
 在经典的回归模型中,主要是 通过回归分析来建立不同变量之间的函数关系(因果关系),以考察事物之间的联系 。本案例要讨论如何 利用时间序列  数据本身建立模型,以研究事物发展自身的规律 ,并据此对事物未来的发展做出预测。研究时间序列数据的意义:在现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。在现实中很多问题,如利率波动、收益率变化、反映股市行情的各种指数等通常都可以表达为时间序列数据,通过研究这些数据,发现这些经济变量的变化规律(对于某些变量来说,影响其发展变化的因素太多,或者是主要影响变量的数据难以收集,以至于难以建立回归模型来发现其变化发展规律,此时,时间序列分析模型就显现其优势——因为这类模型不需要建立因果关系模型,仅需要其变量本身的数据就可以建模),这样的一种建模方式就属于时间序列分析的研究范畴。而时间序列分析中,ARIMA模型是最典型最常用的一种模型。
  
 
  
  
  二、ARIMA模型的原理 
  
  1、ARIMA的含义。 ARIMA包含3个部分,即AR、I、MA。AR——表示auto  regression,即自回归模型;I——表示integration,即单整阶数,时间序列模型必须是平稳性序列才能建立计量模型,ARIMA模型作为时间序列模型也不例外,因此首先要对时间序列进行单位根检验,如果是非平稳序列,就要通过差分来转化为平稳序列,经过几次差分转化为平稳序列,就称为几阶单整;MA——表示moving average,即移动平均模型。可见,ARIMA模型实际上是AR模型和MA模型的组合。
  
 ARIMA模型与ARMA模型的区别:ARMA模型是针对平稳时间序列建立的模型。ARIMA模型是针对非平稳时间序列建模。换句话说,非平稳时间序列要建立ARMA模型,首先需要经过差分转化为平稳时间序列,然后建立ARMA模型。
  
  2、ARIMA模型的原理。 正如前面介绍,ARIMA模型实际上是AR模型和MA模型的组合。
  
  AR模型的形式如下: 
  
 
  
  
 其中:参数为常数,是阶自回归模型的系数;为自回归模型滞后阶数;是均值为0,方差为的白噪声序列。模型记做——表示阶自回归模型。
  
  MA模型的形式如下: 
  
 
  
  
 其中:参数为常数;参数是阶移动平均模型的系数;为移动平均模型滞后阶数;是均值为0,方差为的白噪声序列。模型记做——表示阶移动平均模型。
  
  ARIMA模型的形式如下: 
  
 
  
  
 模型记做。为自回归模型滞后阶数,为时间序列单整阶数,为阶移动平均模型滞后阶数。当时,,此时ARIMA模型退化为MA模型;当时,,ARIMA模型退化为AR模型。
  
  3、建立ARIMA模型需要解决的3个问题。 由以上分析可知,建立一个ARIMA模型需要解决以下3个问题:
  
 (1)将非平稳序列转化为平稳序列。
  
 (2)确定模型的形式。即模型属于AR、MA、ARMA中的哪一种。这主要是通过 模型识别 来解决的。
  
 (3)确定变量的滞后阶数。即和的数字。这也是通过 模型识别 完成的。
  
  4、ARIMA模型的识别 
  
 ARIMA模型识别的工具为自相关系数(AC)和偏自相关系数(PAC)。
  
  自相关系数: 时间序列滞后k阶的自相关系数由下式估计:
  
 
  
  
 其中是序列的样本均值,这是相距k期值的相关系数。称为时间序列的自相关系数,自相关系数可以部分的刻画一个随机过程的形式。它表明序列的邻近数据之间存在多大程度的相关性。
  
  偏自相关系数: 偏自相关系数是在给定的条件下,之间的条件相关性。其相关程度用偏自相关系数度量。在k阶滞后下估计偏自相关系数的计算公式为:
  
 
  
  
 其中是在k阶滞后时的自相关系数估计值。称为偏相关是因为它度量了k期间距的相关而不考虑k-1期的相关。如果这种自相关的形式可由滞后小于k阶的自相关表示,那么偏相关在k期滞后下的值趋于0。
  
  识别: 
  
  AR(p)  模型 的自相关系数是随着k的增加而呈现指数衰减或者震荡式的衰减,具体的衰减形式取决于AR(p)模型滞后项的系数;AR(p)模型的偏自相关系数是p阶截尾的。因此可以通过识别AR(p)模型的偏自相关系数的个数来确定AR(p)模型的阶数p。
  
  MA(q)  模型 的自相关系数在q步以后是截尾的。MA(q)模型的偏自相关系数一定呈现出拖尾的衰减形式。
  
  ARMA(p,q)  模型 是AR(p)模型和MA(q)模型的组合模型,因此ARMA(p,q)的自相关系数是AR(p)自相关系数和MA(q)的自相关系数的混合物。当p=0时,它具有截尾性质;当q=0时,它具有拖尾性质;当p,q都不为0,它具有拖尾性质。
  
 通常,ARMA(p,q)过程的偏自相关系数可能在p阶滞后前有几项明显的 尖柱 ,但从p阶滞后项开始逐渐趋于0;而它的自相关系数则是在q阶滞后前有几项明显的 尖柱 ,从q阶滞后项开始逐渐趋于0。
  
  三、数据和变量的选择 
  
 本案例选取我国实际GDP的时间序列建立ARIMA模型,样本区间为1978—2001。数据来源于国家统计局网站上各年的统计年鉴,GDP数据均通过GDP指数换算为以1978年价格计算的值。见表1:
  
 表1:我国1978—2003年GDP(单位:亿元)
  
 年度GDP年度GDP年度GDP
  
 19783605.6198610132.8199446690.7
  
 19794074198711784.7199558510.5
  
 19804551.3198814704199668330.4
  
 19814901.4198916466199774894.2
  
 19825489.2199018319.5199879003.3
  
 19836076.3199121280.4199982673.1
  
 19847164.4199225863.7200089340.9
  
 19858792.1199334500.7200198592.9
  
 
  
  
  四、ARIMA模型的建立步骤 
  
  1、单位根检验,确定单整阶数。 
  
 由单位根检验的案例分析可知,GDP时间序列为2阶单整的。即d=2。通过2次差分,将GDP序列转化为平稳序列 。利用序列来建立ARMA模型。
  
  2、模型识别 
  
 确定模型形式和滞后阶数,通过自相关系数(AC)和偏自相关系数(PAC)来完成识别。
  
 首先将GDP数据输入Eviews软件,查看其二阶差分的AC和PAC。打开GDP序列窗口,点击View按钮,出现下来菜单,选择Correlogram(相关图),如图:
                                          
 打开相关图对话框,选择二阶差分(2nd difference),点击OK,得到序列的AC和PAC。(也可以将GDP序列先进行二阶差分,然后在相关图中选择水平(Level))
  
 
  
                                                                                  
 从图中可以看出,序列的自相关系数(AC)在1阶截尾,偏自相关系数(PAC)在2阶截尾。因此判断模型为ARMA模型,且,。即:
  
 
  
  
  3、建模 
  
 由以上分析可知,建立模型。首先将GDP序列进行二次差分,得到序列。然后在Workfile工作文件簿中新建一个方程对话框,采用 列表法 的方法对方程进行定义。自回归滞后项用ar表示,移动平均项用ma表示。本例中自回归项有两项,因此用ar(1)、ar(2)表示,移动平均项有一项,用ma(1)表示,如图:
                                          
 
  
  
 
  
  
 点击确定,得到模型估计结果:
                                          
 
  
  
 
  
  
 从拟合优度看,,模型拟合效果较好,DW统计量为2.43,各变量t统计量也通过显著性检验,模型较为理想。对残差进行检验,也是平稳的,因此判断模型建立正确。

时间序列分析模型——ARIMA模型

6. ARIMA模型做时间序列分析怎么判断序列图是否具有季节性?

输入代码自动判断:
View\Residual
Test\Correlogram-Q-statistics
输出et与et-1,et-2…et-p(p是事先指定的滞后期长度)的相关系数和偏相关系数。
异方差的检验:最简单的检验方法是White检验。



扩展资料:
ARIMA模型做时间序列类型:
长期趋势(T)。即时间序列在一个长时期内受基本因素的影响而增大或减小的趋势。
周期波动(C),也叫循环变动。即时间序列受经济等原因影响呈现出的波浪形和震荡式发展。
季节变动(S)。即时间序列在一年内某个时期重复出现的波动。
不规则变动(I)。即时间序列由于突发或偶然事件引起的变动。

7. ARIMA模型做时间序列分析怎么判断序列图是否具有季节性?

输入代码自动判断:
View\Residual
Test\Correlogram-Q-statistics
输出et与et-1,et-2…et-p(p是事先指定的滞后期长度)的相关系数和偏相关系数。
异方差的检验:最简单的检验方法是White检验。



扩展资料:
ARIMA模型做时间序列类型:
长期趋势(T)。即时间序列在一个长时期内受基本因素的影响而增大或减小的趋势。
周期波动(C),也叫循环变动。即时间序列受经济等原因影响呈现出的波浪形和震荡式发展。
季节变动(S)。即时间序列在一年内某个时期重复出现的波动。
不规则变动(I)。即时间序列由于突发或偶然事件引起的变动。

ARIMA模型做时间序列分析怎么判断序列图是否具有季节性?