帮我区分一下:拐点,驻点,极值点

2024-05-07 06:04

1. 帮我区分一下:拐点,驻点,极值点

1、错误。拐点两边的单调性可以是相同的,例如(0,0)是曲线y=x^3的拐点,在原点左、右,函数都是单调增加的。拐点可能是极值点(可以构造出这样的函数),也可能不是极值点(一般初等函数都是如此)。
2、错误。极值点也可能是导数不存在点;驻点处的左、右导数都等于0,极值点处的左、右导数可以不相等。
3、正确,但不是充要条件,若在该点处一、二、三阶导数都等于0,四阶导数不等于0,该点也是极值点。

帮我区分一下:拐点,驻点,极值点

2. 如何理解极值点、驻点、拐点的区别和联系?

函数的极值点、驻点和拐点这些概念很多同学和老师都容易混淆。如何正确认识极值点、驻点、拐点其主要依据是定义及相关理解,只有理解透定义域定理,进而找到他们的本质差别,才不至于混为一谈。
驻点、极值点、拐点是微积分中不能绕过的知识点,要想完全掌握必须抓住核心定义,而不是去死记硬背一些推论。理解本质才能应对千变万化的题目。
1.核心概念
驻点:是函数的一阶导数为0地点,另外驻点也称为稳定点,临界点
例如:y=x3,则f’(x)=3x2,令f’(x)=0,解得x=0,则x=0是函数y=x3地驻点
极值点:是函数的单调性发生变化的点,或是函数的局部极大值或极小值点(或者说当函数存在导数时,函数的极值点是其导函数的变号零点)
例如:y=x2,如图在x=0处,函数的单调性发生了变化,或者说x=0附近的区域,f(0)取得极小值,这两个均说明x=0是函数y=x2的极值点

备注:我们在求函数的极值时,通常令f(x)的一阶导数为0,但一阶导数为0地点不一定是极值点,例如y=x3,则f’(x)=3x2,令f’(x)=0,解得x=0,这时x=0不是函数的极值点,因为该函数在x=0处的单调性没有发生变化。
拐点:是函数二阶导数为0且三阶导数不为0地点
例如:
我们以f(x)=x3为例来看看什么是拐点,如图:在(0,0)处函数的凹凸性发生了变化,我们知道二阶导为正,原函数是凸函数,二阶导为负,原函数的凹函数。该函数是先凹后凸,因此(0,0)是函数的拐点。

备注:在拐点处,函数的凹凸性发生了改变,当二阶导数大于0,说明函数图像下凹;如果二阶导数小于0,说明函数图象上凸。
2.区别和联系
① 零点,驻点,极值点指的都是函数y=f(x)的一个横坐标x0,而拐点指的是函数y=f(x)图像上的一个点(x0,f(x0))
② 驻点和极值点:可导函数f(x)的极值点必定是它的驻点,但是反过来,函数的驻点却不一定是极值点。例如上面举例的y=x3,x=0是函数f(x)的驻点,但它不是极值点。此外,函数在它的一阶导数不存在时,也可能取得极值,例如y=|x|,在x=0处导数不存在,但极值点是x=0,具体可见下面的图像。

③ 驻点和极值点与函数的一阶导数有关,拐点与函数的二阶导数和三阶导数有关。
3.内容归纳

3. 驻点、极值点和拐点

未必比如分段函数f(x)=根号x(0≤x≤1)
                    =1(x>1)
在x=1处,尽管导数值为零,但是(1,1)既不是(严格)极值点,也不是拐点
首先要明确可导函数极值充分条件
f'(x0)=0且f''(x0)不等于0
可导函数拐点充分条件
f''(x0)=0且f'''(x0)不等于0
对于你的问题,应该这样考虑
对于可导函数来说,若x0是驻点,但是不是极值点的话,可以考虑这样一种情况
f'(x0)=0,且f''(x0)=0,但我们不知道f'''(x0)是否等于0,因此不能必然的推出你的结论 

你的猜测显然是错的。不过一楼给的例子也不好,至少来说(1,1)确实是极值点,还不足以否定命题。


下面对分段函数f(x)=x^4*sin(1/x),x不等于0
                  =0             x=0
f'(0)=0  是满足的
用理论说会比较复杂,我直接用图像来说

他的图像在 x=0的任意邻域内都会在X轴上下震荡无限次,有点类似于正弦函数  只不过它的振幅越来越小  无限趋近于0  而他又是一个奇函数  你就可以类比正弦函数来想想他的图像  显然不会是极值点   而拐点的定义是凹凸的分界点  x=0的任意邻域内  他的凹凸性质都可以改变无数次  所以,x=0也不是凹凸的分界点
也就不是拐点

驻点、极值点和拐点

4. 不是极值点的驻点一定是拐点吗?

我们先来看看驻点、极值点、拐点的充分必要条件,
①驻点:f'(x)=0
②极值点:f'(x)=0且f''(x)≠0
③拐点:f''(x)=0且f'''(x)≠0
你说不是极值的驻点,也就是f'(x)=0且f''(x)=0,看见二阶导等于0,符合了拐点的一部分条件,但是如何确定三阶导不等于0 ?万一三阶导也等于0呢,那就不是拐点了,最好的反例就是y=a 一条水平线任何一处都是驻点但不是极值点,也不是拐点

5. 什么是拐点,极值点,驻点?

一、定义不同
1、极值点:若f(a)是函数f(x)的极大值或极小值,则a为函数f(x)的极值点,极大值点与极小值点统称为极值点。极值点是函数图像的某段子区间内上极大值或者极小值点的横坐标。极值点出现在函数的驻点(导数为0的点)或不可导点处(导函数不存在,也可以取得极值,此时驻点不存在)。
2、驻点:函数的一阶导数为0地点(驻点也称为稳定点,临界点)。对于多元函数,驻点是所有一阶偏导数都为零的点。
3、拐点:又称反曲点,在数学上指改变曲线向上或向下方向的点,直观地说拐点是使切线穿越曲线的点(即连续曲线的凹弧与凸弧的分界点)。
二、性质不同
1、在驻点处的单调性可能改变,在拐点处凹凸性可能改变。
2、拐点:使函数凹凸性改变的点。
3、驻点:一阶导数为零。
三、特征不同
1、极值点不一定是驻点。如y=|x|,在x=0点处不可导,故不是驻点,但是极(小)值点。
2、驻点也不一定是极值点。如y=x³,在x=0处导数为0,是驻点,但没有极值,故不是极值点。
3、该曲线图形的函数在拐点有二阶导数,则二阶导数在拐点处异号(由正变负或由负变正)或不存在。

扩展资料:
1、零点,驻点,极值点指的都是函数y=f(x)的一个横坐标x0,而拐点指的是函数y=f(x)图像上的一个点
2、驻点和极值点:可导函数f(x)的极值点必定是它的驻点,但是反过来,函数的驻点却不一定是极值点。例如上面举例的y=x3,x=0是函数f(x)的驻点,但它不是极值点。此外,函数在它的一阶导数不存在时,也可能取得极值,例如y=|x|,在x=0处导数不存在,但极值点是x=0。
3、驻点和极值点与函数的一阶导数有关,拐点与函数的二阶导数和三阶导数有关。
参考资料:百度百科-极值点
参考资料:百度百科-驻点
参考资料:百度百科-拐点

什么是拐点,极值点,驻点?

6. 不是极值点的驻点一定是拐点吗?

极值点一定是驻点吗?
对于y=f(x),使一阶导数f'(x)=0的点是函数的驻点。
函数极值点不一定是驻点,如f(x)=|x|,在x=0
处导数不存在,当然也就不是驻点,但x=0显然是极小值点。
反之,函数的驻点但也不一定是极值点。
如f(x)=x³,f'(x)=3x²,f'(0)=0,是驻点,但不是极值点。

7. 拐点,驻点,极值点分别是点还是指坐标?

零点,驻点,极值点指的都是函数y=f(x)的一个横坐标x0,而拐点指的是函数y=f(x)图像上的一个点。
拐点:二阶导数为零,且三阶导不为零;驻点:一阶导数为零或不存在。
极值点:若f(a)是函数f(x)的极大值或极小值,则a为函数f(x)的极值点,极大值点与极小值点统称为极值点。

扩展资料:
驻点和拐点的区别在驻点处的单调性可能改变,在拐点处单调性也可能发生改变,但凹凸性肯定改变;极值点不一定是驻点,驻点不一定是极值点。因为取极值不需要可导,驻点必须可导。对于可导函数,极值点必定是驻点。
可导函数f(x)的极值点必定是它的驻点,但是反过来,函数的驻点却不一定是极值点。例如上面举例的y=x3,x=0是函数f(x)的驻点,但它不是极值点。此外,函数在它的一阶导数不存在时,也可能取得极值,例如y=|x|,在x=0处导数不存在,但极值点是x=0。

拐点,驻点,极值点分别是点还是指坐标?

8. 拐点,驻点,极值点分别是点还是指坐标?

拐点,驻点均是指点,而极值点则是X轴上的横坐标。
拐点,又称反曲点,在数学上指改变曲线向上或向下方向的点,直观地说拐点是使切线穿越曲线的点(即连续曲线的凹弧与凸弧的分界点)。若该曲线图形的函数在拐点有二阶导数,则二阶导数在拐点处异号(由正变负或由负变正)或不存在。
在微积分,驻点(Stationary Point)又称为平稳点、稳定点或临界点(Critical Point)是函数的一阶导数为零,即在“这一点”,函数的输出值停止增加或减少。对于一维函数的图像,驻点的切线平行于x轴。对于二维函数的图像,驻点的切平面平行于xy平面。
值得注意的是,一个函数的驻点不一定是这个函数的极值点(考虑到这一点左右一阶导数符号不改变的情况);反过来,在某设定区域内,一个函数的极值点也不一定是这个函数的驻点(考虑到边界条件),驻点(红色)与拐点(蓝色),这图像的驻点都是局部极大值或局部极小值。
若f(a)是函数f(x)的极大值或极小值,则a为函数f(x)的极值点,极大值点与极小值点统称为极值点。极值点是函数图像的某段子区间内上极大值或者极小值点的横坐标。极值点出现在函数的驻点(导数为0的点)或不可导点处(导函数不存在,也可以取得极值,此时驻点不存在)。

扩展资料
函数的平稳点的术语可能会与函数图的给定投影的临界点相混淆。
“临界点”更为通用:功能的平稳点对应于平行于x轴的投影的图形的临界点。另一方面,平行于y轴的投影图的关键点是导数不被定义的点(更准确地趋向于无穷大)。因此,有些作者将这些预测的关键点称为“关键点”。
拐点是导数符号发生变化的点。拐点可以是相对最大值或相对最小值(也称为局部最小值和最大值)。如果函数是可微分的,那么拐点是一个固定点;然而并不是所有的固定点都是拐点。如果函数是两次可微分的,则不转动点的固定点是水平拐点。例如,函数 x3在x = 0处有一个固定点,也是拐点,但不是转折点。
在驻点处的单调性可能改变,在拐点处凹凸性一定改变。
拐点:使函数凹凸性改变的点。
驻点:一阶导数为零。
参考资料来源:百度百科-极值点
参考资料来源:百度百科-驻点
参考资料来源:百度百科-拐点