实现可控核聚变有什么意义

2024-05-16 18:45

1. 实现可控核聚变有什么意义

现代人类文明大约位于宇宙文明的0.7级,而可控核聚变的实现被视为第一宇宙文明实现的标志。

实现可控核聚变有什么意义

2. 实现可控核聚变意味着什么?

实现受控核聚变就可利用核能。
裂变时靠原子核分裂而释出能量。聚变时则由较轻的原子核聚合成较重的原子核而释出能量。最常见的是由氢的同位素氘和氚聚合成较重的原子核如氦而释出能量。
核聚变较之核裂变有两个重大优点。一是地球上蕴藏的核聚变能远比核裂变能丰富得多。第二个优点是既干净又安全。

可控核聚变的特点
核裂变是物质中比较重的原子核进行分裂,转化成比较小而轻的原子的过程;而核聚变反应当然是相反的,指的是两个较轻的原子核在反应中形成一个较重的原子核与一个较轻的粒子的过程。
核裂变与核聚变当然不是人类发明出的能源,在自然界本身就一直存在着,甚至我们时时刻刻都在感受着核聚变的能量,因为我们的恒星太阳所散发出来的光和热,就是核聚变反应的产物。

3. 可控核聚变有可能实现吗?

有专家表示目前仍处于初级探索阶段的暗物质或许是“候选者”之一,但对于人类来说这条路十分漫长。虽然掌握了核聚变技术无法帮助我们突破银河系,但是帮我们突破太阳系还是有可能的。有观点认为一旦人类成功飞出太阳系,那这相当于人类解锁了新区域。在新的宇宙区域中我们又可以继续进行探索,说不定能够发现一颗含有丰富矿产的星球。目前来说一切都还只是设想。

核裂变与核聚变是产生核能的两种方式,前者是通过不断分裂原子核来释放能量,后者是通过不断结合原子核来产生能量。如果单纯从能量转化方面来看的话。
那么核聚变反应要比核裂变反应高出至少五倍左右。如果从原料供给的角度来看的话,核裂变的原料要求高,因此地球储备量有限,但是宇宙中到处都是核聚变的原料,那就是最基本的氢元素。因此宇宙中大多数能够“熊熊燃烧”的恒星都是通过核聚变反应维持的。

可控核聚变有可能实现吗?

4. 可控核聚变有没有可能实现,为什么?

原料易得,核聚变的原料是重水,可以直接从海水中提炼,并且地球中储量极大。核聚变的过程及其产物均不会对环境造成污染,亦不会造成核泄漏的危害。那么将这个煤炉子里的燃料从核燃料换成核聚变的原料的最大的麻烦在哪里?就在于其反应条件。核裂变需要的反应条件很弱,天然的铀矿在常温的自然条件下就可以发生衰变。但是相比于核裂变过程来讲,核聚变最麻烦的反应条件就是——需要瞬间上亿度的高温才能引起核聚变反应。而如此高的温度是用传统加热方法所无法达到的。人类研制氢弹时,对于该问题给出了以下解决方案:用核弹引爆氢弹!即通过核弹引爆得到达到核聚变反应的温度,从而引起核聚变使得氢弹爆炸。因此氢弹内部是有一个小型核弹的。这样的话,研究可控核聚变的最关键问题现在已经很明显了,即:怎么将核聚变的原料加热到这么高的温度?(怎么点燃炉子里面的燃料?)将核聚变的原料加热到这么高的温度以后拿什么来装它?(怎么让燃料不把炉子烧穿了?)首先来说第1个问题,关于如何加热的方法,从上世纪60年代开始,激光器的发明,为如何将物质加热到极高能量这一问题打开了一条门缝。最早是苏联专家开始考虑使用激光加热核聚变的原料,因为该方法能量大,而且无需与被加热物质接触,简单理解就是类似于拿阳光聚焦之后点燃木屑。但是单个激光器的能量太低,所以为了解决这样的问题,需要将多个激光器的能量聚焦于同一点。该问题看似简单,实则非常困难。因为必须保证在短暂的加热时间内,被加热物体的所有方向受热均匀,一致向球心坍缩(简单理解就是将被加热物质想象成一个足球,如果想要挤压足球内部的空气,最好的方法就是从四面八方一起用力,使其体积被压缩。如果仅仅从两个方向使劲,则足球会变形,足球内部的空气被挤压效果就会大打折扣)。这不仅需要每个激光器对准的方向控制地异常精确,也需要在这一极短的时间内每个激光器的能量大小需要严格控制。目前在该领域美国的研究进展是最快的,其「国家点火装置」目前正在实验将192个激光器聚焦于同一点。而我国的「神光三号」项目目前则正在试验将32个激光器聚焦,下一步目标是48个。

5. 可控核聚变到底是什么?究竟有多难实现?

是两个较轻的原子核聚合为一个较重的原子核,并释放出能量的过程。自然界中最容易实现的聚变反应是氢的同位素——氘与氚的聚变,这种反应在太阳上已经持续了50亿年。可控核聚变俗称人造太阳,因为太阳的原理就是核聚变反应。
(核聚变反应主要借助氢同位素。核聚变不会产生核裂变所出现的长期和高水平的核辐射,不产生核废料,当然也不产生温室气体,基本不污染环境)人们认识热核聚变是从氢弹爆炸开始的。科学家们希望发明一种装置,可以有效控制“氢弹爆炸”的过程,让能量持续稳定的输出。

详细内容
地球上的能量,无论是以矿石燃料,风力,水力还是动植物的形式储存起来的,最终的来源都是太阳:矿石燃料是由千百万年前的动植物演变而来的,而动植物(无论是今天的还是以前的)的能量最终是要来源于食物链底端的植物的光合作用所储存的太阳能;风的起因是由于太阳对大气的加热造成的冷热不均;
水力的势能一样要靠太阳的加热使处于低平位置的水体蒸发,上升,再以降水形式被“搬运”到较高位置,从而形成势能。因此,无论人类利用这其中哪一种能源,归根结底都是在利用太阳能,而太阳的能量则是来源于核聚变;
因此,人类如果掌握了有序地释放核聚变的能量的办法,就等于掌握了太阳的能量来源,就等于掌握了无穷无尽的矿石燃料,风力和水力能源,一些人鼓吹的现代工业将因为没有能量来源而走向灭亡的观点也就破产了。

可控核聚变到底是什么?究竟有多难实现?

6. 可控核聚变 为什么不能实现

不受控的核聚变就是氢弹,这个已经没问题了。但受控的核聚变还不行。有两个原因。
一是聚变反应的速率无法控制。核电站是受控核裂变反应。反应速率靠控制反应时产生的中子数量来实现。想让反应进行得快一点,就把中子吸收剂抽出来一点,中子多了,反应速率就加快了。想让反应进行得慢一点,就把中子吸收剂多放进去一些,中子少了,反应就进行得慢了。当把中子吸收剂完全放进去时,所有中子都被吸收了,裂变反应就基本中止了。
但聚变反应就不一样。聚变反应需要极高的温度和极大的物质密度。一旦达到反应条件,靠什么来控制反应速率呢?既要保持上千万度的反应温度,又要只让一部分氢核相互反应,另外大部分氢核不反应,现在还没办法。
二是找不到放置核聚变反应的容器。聚变反应需要上千万度的反应温度,又要保持极高的物质密度,而且一旦反应开始进行,产生的能力会使内部压力急剧升高。那把聚变反应放在哪里进行呢?有什么东西能把正在反应的氢燃烧装进去,既能在上千万度的温度下不熔化,又能承受反应时内部巨大的压力呢?至少在现在,还找不出这样的材料。有人设想用极强的电磁能把反应限制在一定的体积内,但目前还实现不了。
所以,目前受控核裂变反应还无法实现。

7. 可控核聚变的实现难点是什么?

可控核聚变,需要把聚变材料束缚在装置内,使之达到上亿度的温度,然后发生聚变反应释放能量,并且实现稳定输出。
目前实现可控核聚变的方式有两种,一是超强激光束进行能量聚焦,二是托卡马克装置。
激光方面美国的技术最先进,但还是远远达不到商用可控核聚变的程度,该技术需要使用尽可能多的激光束,把能量聚焦到一个点上,每个方位的能量输入不能有偏差,这点难度就非常高,而且强激光对光学设备的要求极高。


而托卡马克装置,在技术上稳步进展,国际上已经能实现输出能量大于输入能量的水平,我国的“人造太阳”也达到了较高的水平。

但是托卡马克装置还存在很多技术瓶颈,距离商用还有很长的距离,比如以下两个难点:
第一壁
可控核聚变主要用到氘核与氚核聚变,反应方程式为:
3H+2H→4He+n,ΔE=14.6MeV;
原子在高温下将成为等离子态,利用磁场可以把原子核与电子分离出来,等离子电浆在托卡马克装置中被束缚;但是反应产物中子不带电,高能中子会频繁撞击内壁,造成内壁物质不可逆转的改变。

虽然等离子体被磁场束缚,但是内壁温度还高达1000℃,在等离子体解体时,内部温度高达3000℃;如果没有应对这种极端条件的材料,频繁更换内壁将是很麻烦的事。
超导材料
托卡马克装置的关键,就是需要利用超导体来制造强磁场,磁场越强束缚高温等离子体的能力越强,目前的超导材料需要在130K温度附近实现。

一边上亿度的超高温等离子体,一边需要保持零下100多摄氏度的超导体,如何把两个系统长时间放到一起稳定运行是一大难点,而且核聚变的中子无法100%隔离,高能中子还会损害超导线圈。
目前期望的解决途径,就是常温超导体,利用常温超导体能大大降低超导系统的复杂程度,但是常温超导体的研制,还没有突破性进展。
除了以上两点,氚元素的来源、磁束缚时间、能量控制、产物导流等问题都有待攻克。

可控核聚变的实现难点是什么?

8. 可控核聚变根本不可能 核聚变为什么不可控

为什么核聚变不可控?大规模爆炸是不行,但现在有磁约束核聚变和惯性核聚变啊。
磁约束核聚变是将氘加热到一亿到三亿度时用磁场制成的“牢笼”来约束高温等离子体,装置叫做托卡马克和仿星器。这个方向已经可以实现核聚变,只不过现在正在探索核聚变的商用的模式,即更高效率地释放能量
惯性约束核聚变是用很多束激光全面照射燃料靶丸形成瞬间高温和高压条件引发核聚变
以上两个方向中国都有,磁约束有EAST和HL-2A,惯性约束有“神光”