陶瓷基复合材料的介绍

2024-05-16 19:13

1. 陶瓷基复合材料的介绍

陶瓷基复合材料是以陶瓷为基体与各种纤维复合的一类复合材料。陶瓷基体可为氮化硅、碳化硅等高温结构陶瓷。这些先进陶瓷具有耐高温、高强度和刚度、相对重量较轻、抗腐蚀等优异性能,而其致命的弱点是具有脆性,处于应力状态时,会产生裂纹,甚至断裂导致材料失效。而采用高强度、高弹性的纤维与基体复合,则是提高陶瓷韧性和可靠性的一个有效的方法。纤维能阻止裂纹的扩展,从而得到有优良韧性的纤维增强陶瓷基复合材料。

陶瓷基复合材料的介绍

2. 陶瓷基复合材料的性能特点

陶瓷基复合材料具有优异的耐高温性能,主要用作高温及耐磨制品。其最高使用温度主要取决于基体特征。陶瓷基复合材料已实用化或即将实用化的领域有刀具、滑动构件、发动机制件、能源构件等。法国已将长纤维增强碳化硅复合材料应用于制造高速列车的制动件,显示出优异的摩擦磨损特性,取得满意的使用效果。

3. 陶瓷基复合材料的相关信息

连续纤维补强陶瓷基复合材料(Continuous FiberReinforced Ceramic Matrix Composites,简称CFCC)是将耐高温的纤维植入陶瓷基体中形成的一种高性能复合材料。由于其具有高强度和高韧性,特别是具有与普通陶瓷不同的非失效性断裂方式,使其受到世界各国的极大关注。连续纤维增强陶瓷基复合材料已经开始在航天航空、国防等领域得到广泛应用[1~3]。20世纪70年代初,J Aveston[2]在连续纤维增强聚合物基复合材料和纤维增强金属基复合材料研究基础上,首次提出纤维增强陶瓷基复合材料的概念,为高性能陶瓷材料的研究与开发开辟了一个方向。随着纤维制备技术和其它相关技术的进步,人们逐步开发出制备这类材料的有效方法,使得纤维增强陶瓷基复合材料的制备技术日渐成熟。20多年来,世界各国特别是欧美以及日本等对纤维增强陶瓷基复合材料的制备工艺和增强理论进行了大量的研究,取得了许多重要的成果,有的已经达到实用化水平。如法国生产的“Cerasep”可作为“Rafale”战斗机的喷气发动机和“Hermes”航天飞机的部件和内燃机的部件[4];SiO2纤维增强SiO2复合材料已用作“哥伦比亚号”和“挑战者号”航天飞机的隔热瓦[5]。由于纤维增强陶瓷基复合材料有着优异的高温性能、高韧性、高比强、高比模以及热稳定性好等优点,能有效地克服对裂纹和热震的敏感性[6~7],因此,在代写论文重复使用的热防护领域有着重要的应用和广泛的市场

陶瓷基复合材料的相关信息

4. 陶瓷复合材料的性能

(1)陶瓷能够很好地渗透进纤维点须和颗粒增强材料;(2)同增强材料之间形成较强的结合力;(3)在制造和使用过程中同增强纤维间没有化学反应;(4)对纤维的物理性能没有损伤;(5)很好的抗蠕变、抗冲击、抗疲劳性能; (6)高韧性;(7)化学稳定性,具有耐腐蚀、耐氧化、耐潮湿等化学性能

5. 陶瓷复合材料的材料

陶瓷与陶瓷或陶瓷基体材料与其他材料所组成的多相材料。主要有陶瓷与金属复合材料,如特种无机纤维或晶须增强金属材料、金属陶瓷、复合粉料等;陶瓷与有机高分子材料的复合材料,如特种无机纤维或晶须增强有机材料等;陶瓷与陶瓷的复合材料,如特种无机纤维、晶须、颗粒、板晶等增韧补强陶瓷材料。陶瓷基复合材料通常可分为颗粒补强陶瓷基复合材料和纤维补强陶瓷基复合材料两类。

陶瓷复合材料的材料

6. 陶瓷复合材料的介绍

复合材料通常具有不同材料相互取长补短的良好综合性能。复合材料兼有两种或两种以上材料的特点,能改善单一材料的性能,如提高强度、增加韧性和改善介电性能等。作为高温结构材料用的陶瓷复合材料,主要用于宇航,军工等部门。此外,在机械、化工、电子技术等领域也广泛采用各种陶瓷复合材料。陶瓷基复合材料是以陶瓷为基体与各种纤维复合的一类复合材料。陶瓷基体可为氮化硅、碳化硅等高温结构陶瓷。这些先进陶瓷具有耐高温、高强度和刚度、相对重量较轻、抗腐蚀等优异性能,而其致命的弱点是具有脆性,处于应力状态时,会产生裂纹,甚至断裂导致材料失效。而采用高强度、高弹性的纤维与基体复合,则是提高陶瓷韧性和可靠性的一个有效的方法。纤维能阻止裂纹的扩展,从而得到有优良韧性的纤维增强陶瓷基复合材料。 陶瓷基复合材料具有优异的耐高温性能,主要用作高温及耐磨制品。其最高使用温度主要取决于基体特征。

7. 陶瓷基复合材料有何特性?

由纤维增强陶瓷的陶瓷基复合材料既可保留陶瓷材料耐高温、高硬高强和耐磨蚀的性能,同时又克服了陶瓷的脆性,陶瓷基复合材料可满足1200℃~1900℃的使用条件。人造地球卫星、载人宇宙飞船等的发射成功,取决于称为“烧蚀材料“的陶瓷基复合材料,当宇宙飞行器从外层空间返回地球时,稠密的大气层是它的必经之地,高速的飞行速度使飞行器和空气之间产生强烈的摩擦,由此而放出的热量瞬间可高达8000℃~10000℃,”烧蚀材料”此时吸收大量的热烧掉自己的一部分,与些同时使周围的温度降低,以保证飞行器本体安然无恙。


陶瓷基复合材料除了用于航空航天部件,还可用于滑动构件、发动机部件和刀件具等。法国用长纤维增强碳化硅复合材料作为超高速列车的制动机,其优异的摩擦磨损特性是传统制动件无法相比的。


陶瓷基复合材料以优异的耐高温和耐磨损性能取胜于其他复合材料,但由于价格昂贵使其应用受到一定限制。


先进复合材料为航天航空事业做出了重大贡献,最新研究结果表明,在某些特种飞机上先进复合材料用量已占50%以上,美国最新生产的具有隐身功能的轰炸机B-2,其机体的结构材料几乎全是复合材料。当今先进复合材料已广泛扩展到其他领域,如用复合材料制成的箭,其箭杆重量减轻4%,命中率也大大提高。在汽车工业领域,用先进复合材料制成的制件代替同样性能的钢制件,可减重70%左右,而且在工艺上可一次成型,可用来制造汽车车体、受力构件、发动机架和内部构件。先进复合材料在化工、纺织业、医疗和精密仪器等领域也发挥着不可估量的作用。


先进复合材料的研究十分活跃,发展趋向有以下特点:由宏观复合向微观复合发展;由增强性的双元混杂向超混杂复合发展;由结构复合向多功能复合发展。复合材料除具有力学性能外,还有其他如电、磁、光等性能。

陶瓷基复合材料有何特性?

8. 陶瓷基复合材料有何特性?

由纤维增强陶瓷的陶瓷基复合材料既可保留陶瓷材料耐高温、高硬高强和耐磨蚀的性能,同时又克服了陶瓷的脆性,陶瓷基复合材料可满足1200℃~1900℃的使用条件。人造地球卫星、载人宇宙飞船等的发射成功,取决于称为“烧蚀材料“的陶瓷基复合材料,当宇宙飞行器从外层空间返回地球时,稠密的大气层是它的必经之地,高速的飞行速度使飞行器和空气之间产生强烈的摩擦,由此而放出的热量瞬间可高达8000℃~10000℃,”烧蚀材料”此时吸收大量的热烧掉自己的一部分,与些同时使周围的温度降低,以保证飞行器本体安然无恙。
陶瓷基复合材料除了用于航空航天部件,还可用于滑动构件、发动机部件和刀件具等。法国用长纤维增强碳化硅复合材料作为超高速列车的制动机,其优异的摩擦磨损特性是传统制动件无法相比的。
陶瓷基复合材料以优异的耐高温和耐磨损性能取胜于其他复合材料,但由于价格昂贵使其应用受到一定限制。
先进复合材料为航天航空事业做出了重大贡献,最新研究结果表明,在某些特种飞机上先进复合材料用量已占50%以上,美国最新生产的具有隐身功能的轰炸机B-2,其机体的结构材料几乎全是复合材料。当今先进复合材料已广泛扩展到其他领域,如用复合材料制成的箭,其箭杆重量减轻4%,命中率也大大提高。在汽车工业领域,用先进复合材料制成的制件代替同样性能的钢制件,可减重70%左右,而且在工艺上可一次成型,可用来制造汽车车体、受力构件、发动机架和内部构件。先进复合材料在化工、纺织业、医疗和精密仪器等领域也发挥着不可估量的作用。
先进复合材料的研究十分活跃,发展趋向有以下特点:由宏观复合向微观复合发展;由增强性的双元混杂向超混杂复合发展;由结构复合向多功能复合发展。复合材料除具有力学性能外,还有其他如电、磁、光等性能。
最新文章
热门文章
推荐阅读