电磁弹射器的优点

2024-05-06 19:19

1. 电磁弹射器的优点

美军为何要采用电磁弹射器?这是因为这种弹射器有很多优点,首先是加速均匀且力量可控。C-13-1型蒸汽弹射器发射是最大过载可以达到6g,,而整个行程的平均加速度仅有2g多一点,F/A-18战斗攻击机飞行员常常调侃C-13-1弹射器在后段往往没有飞机自身的发动机加速得快。随着速度和气缸容积的增加,过热蒸汽的膨胀绝大多数能量用于蒸汽本身的加速和推动上了,而体积增加后气体膨胀所需蒸汽的比例成立方关系增加。蒸汽弹射器长度和气缸容积几乎达到极限,到弹射冲程的末端,蒸汽基本上只能加速活塞,对飞机的帮助不大。电磁弹射器的推力启动段没有蒸汽那种突发爆炸性的冲击,峰值过载从6g可以降低到3g,这不仅对飞机结构和寿命有着巨大的好处,对飞行员的身体承受能力也是一个不错的改善。此外,由于电磁弹射的加速和弹射器的长度没有关系,除了受到气动阻力和摩擦阻力的影响外,弹射初段到末段的基本加速度不会出现太大的波动,这就比蒸汽弹射的逐步下降来得更有效率。根据计算,平均加速度一样时,电磁弹射器可以比蒸汽弹射击让飞机多载重8%~15%。另一个比较重要的好处在于电磁弹射器具有很大的能量输出调节范围。蒸汽弹射器的功率输出依靠一个叫速率阀的东西,利用控制蒸汽流量的方式控制弹射器的功率输出,机械的可调节性能输出达到1:6差不多就是极限了;而电磁弹射的功率输出是由电路系统控制的,从大功率民用变电的经验可知1:100以内的变化是相当容易的。美国海军未来将会大量使用轻重不一的无人机,蒸汽弹射器很难适应这个要求。对航母的设计是和海军操作人员来说,电磁弹射器是一个大福音,它不仅将机库甲板的占用面积缩减到原来的1/3,而且重量还轻了一半。大幅减轻高过重心位置的重量对航母的稳性设计是个很有益的举措,同时既不用再为复杂的蒸汽管道迷宫所困扰,也不用再为灼热的蒸汽泄漏和四处污溅、难以清洁的润滑油所发愁。还有一个好处是电磁弹射器能与滑跃式甲板巧妙融合,而蒸汽弹射器却没有电磁弹射器的灵活,它不能弯曲,就无法与滑跃起飞结合,而电磁弹射器与滑跃式起飞结合后能增加飞机的载重量。如果将来中国研制出了电磁弹射器,并实用于辽宁号,便可使辽宁号搭载更多机种,像空警200或空警2000,还可以像美国一样搭载无人机,这样就大大提升了辽宁号的作战能力。

电磁弹射器的优点

2. 弹射技术的电磁弹射器的优势

003型航母是外界最为关心的海军装备,到目前为止,该舰已经完成了各分段的建造,现在已经处于合拢阶段。据媒体消息的报道,003型航母预计将在明年海军节期间下水,2021年可能就会正式服役。

3. 电磁弹射器的优点?

电磁弹射器的优点:
1、能简化舰上维修工作,电磁弹射器将“自动进行状态监测”,发出系统失效的预报和在完成维修工作后跟踪可维持保持多少次弹射。
2、据Sulich估计,海军用它可以比用蒸汽弹射器节省劳动力成本达30%以上,由此几年节省下来的费用足以抵消开发电磁弹射器的成本。
3、精度高。它将使海军扩大航空母舰上弹射从轻型到重型飞机的能力,有更好的“高精确度控制弹射和回收”。
4、允许用闭路控制整个弹射过程,减少弹射应力并对弹射性能进行更
5、有更好地控制,安排程序的适应性以及更好利用动力来进行操作监视。
6、为了更换目前使用的液压系统,电磁弹射器设计可以制造目前舰所使用的电力为基础的飞机阻拦系统。


扩展资料:
电磁弹射器组成部分:
1、电源装置
电磁弹射器用的是直流电源,而且在电磁弹射器工作时是负荷冲击性非常大。虽然有了储能装置,但由于要求弹射器在很短时间内起飞更多架次的飞机,所以对电磁弹射器的电源容量要求也比较大,一般容量在5~8KVA左右(但输出电压却不高)。
2、强迫储能装置
强迫储能装置是电磁弹射器的核心部件,它不仅缓解了发电机的压力,同时在弹射器不工作时吸收发电机的能量,使发电机几乎不受冲击性负荷的影响。强迫储能装置原理不复杂,但实施起来很麻烦。
3、直线电机
直线电机既是系统动力的提供者,同时又是整个电磁弹射系统所要控制的对象,因此直线电机本身就是系统主要组成部分之一,直线电机性能的好坏对整个电磁弹射系统有着直接的影响。
4、控制系统
控制系统是整个EMALS 系统的大脑,通过运算控制程序,大量的位置、温度、速度等不同类型的传感器,不间断地指挥、监视着EMALS 全系统的工作。
5、导轨
电磁弹射器的导轨与电磁轨道炮的差异很大,也比其复杂的多。电磁弹射器的导轨共有4个,分别为上部2个,下部2个。
6、脉冲发生器
以上过程实际上是脉冲发生器(电力电子系统控制储能系统脉冲放电,调节直线电机转速)完成的。
7、辅助系统
即冷却系统、预加动力装置、减速缓冲与刹车装置等。
参考资料:百度百科-电磁弹射器

电磁弹射器的优点?

4. 电磁弹射器的发展过程

美军研发的电磁弹射器由三大主要部件构成,分别是线性同步电动机、盘式交流发电机和大功率数字循环变频器,线性同步电动机是电磁弹射器的主体,它是20世纪80年代末期研究的电磁线圈炮的放大版。电磁线圈炮也叫电磁线圈抛射器,1831年英国物理学家法拉弟发现电磁现象以后就有人开始设想电磁线圈炮。1845年,有科学家在理论试验中将一个金属柱抛出20米;1895年,美国有项专利设计了理论上能够将炮弹抛射230千米的线圈炮;1900年,挪威物理学教授克里斯坦·勃兰登获得三项关于电磁炮的专利;1901年,勃兰登在实验室制造了一座长10米、口径65毫米的模型,可以把10千克的金属块加速到100米/秒,这引起了挪威政府、德国政府的注意。德国著名的火炮生产厂商克虏伯公司为勃兰登教授提供了5万马克的研究经费,勃兰登设计了一门长27米、口径380毫米的巨炮,预计可以将2吨重的炮弹发射到50千米远,弹丸速度可以达到900米/秒。为了实现这个目的,勃兰登设计了3800多个线圈,重量达到30吨。使用这门大炮需要3千伏、600千安的直流电源。当时的技术条件根本不可能提供这种直流电源,因此该炮最后被废弃,炮上所用的大量铜丝在后来的战争中被作为重要战略物资回收。1970年,德国科隆大学的哈布和齐尔曼用单机磁线圈将一个1.3克的金属圆环加速到490米/秒,这一成果迅速引起世界范围内的高度重视。1976年,苏联科学家本达列托夫和伊凡诺夫宣布已将1.5克的圆环加速到4900米/秒。20世纪80年代,美国太空总署(NASA)桑地亚中心一直在进行电磁线圈炮的概念性研发工作,他们曾尝试修建一个长700米、仰角30度、口径500毫米、采用12级、每级3000个电磁线圈的巨炮,可以将2吨重的火箭加速到4000~5000米/秒,推送到200千米以上的高度。NASA预计使用这个系统发射小型卫星或者为未来兴建大型近地空间站提供廉价的物资运送方式,其发射成本只有火箭的1/2000。在早期概念性研究阶段,NASA发展了一系列解决瞬间能源的技术方案,这些都成为电磁弹射的技术基础。美国EMALS中的线性同步电动机采用了单机驱动的方式,只是用一台直线电机直接驱动,和以前的双气缸蒸汽弹射并联输出不同。线性电动机长95.36米,末段有7.6米的减速缓冲区,整个弹射器长103米。弹射器中心的动子滑动组,由190块环形的第三代超级稀土钕铁硼永磁体构成,每一块永磁体间有细密的钛合金制造的承力骨架和散热器管路,中心布置有强力散热器。虽然滑组在工作中其本身只有电感涡流和磁涡流效益产生不多的热量,但是其位置处于中心地带,散热条件不好,且永磁体对温度敏感,高过一定温度就会失效。滑组和定子线圈间保持均匀的6.35毫米间隙,相互间不发生摩擦,依靠滑车和滑车轨道之间的滑轮保持这个间隙不变。滑动组上因为没有需要使用电的装置,所以结构比较简单,且无摩擦设备,需要检修和维修的工作量极少。弹射中,每一块定子磁体将只承受2.7千克/平方厘米的应力。由于滑动组采用了固定的高磁永磁体,所以定子被设计成电磁,形状为马鞍形,左右将滑动组包围,上部有和标准蒸汽弹射器相同大小的35.6毫米的开缝。定子采用模块化设计,共有298个模块,分为左右两组,每个模块由宽640毫米、高686毫米、厚76毫米的片状子模块构成。一个模块上有24个槽,每个槽用3相6线圈重叠绕制而成,这样每一个模块就有8个极,磁极距为80毫米。槽间采用高绝缘的G10材料制成,每个槽都用环氧树脂浇铸,将其粘接成一个无槽的整体模块。通过数字化定位的霍尔元件,定子模块感应滑车上的磁强度信号,当滑车接近时,模块被充电,离开后断开,这样不需要对整个路径上的线圈充电,可以大大节省能源。每一个模块的阻抗很小,只有0.67毫欧,它的设计效率为70%,一次弹射中消耗在定子中的能量有13.3兆瓦,铜线圈的温度会被迅速加热到118.2℃,加之受环境温度影响,这一温度可能会高达155℃。这将超过滑车永磁体的极限退磁温度,因此需要强制冷却,冷却方案是定子模块间采用铝制冷却板,板上有细小的不锈钢冷却管,可以在弹射器循环弹射的45秒重复时间内将线圈温度从155℃降低到75℃。线性电动机的末段是反相段,通过电流反相就能让滑组减速并停下来,同时自动恢复到起始位置。从电磁线圈炮的发展历史来看,阻碍电磁弹射器的现实化并不是线性电机本身,而是强大而稳定的瞬发能源。美国航母上采用20世纪90年NASA为电磁炮、激光武器发展的惯性储能装置研制而来的盘式交流发电机。新设计的盘式交流发电机重约8.7吨,如果不算附加的安全壳体设备,其重量只有6.9吨。盘式交流发电机的转子绕水平轴旋转,重约5177千克,使用镍铬铁的铸件经热处理而成,上面用镍镉钛合金箍固定2对扇形轴心磁场的钕铁硼永磁体。镍镉钛合金箍具有很大的弹性预应力,可确保固定高速旋转中的磁体。转子旋转速度为6400转/分,一个转子可存储121兆焦的能量,储能密度比蒸汽弹射器的储气罐高一倍多。一部弹射器由4台盘式交流发电机供电,安装时一般采用成对布置,转子反向旋转,可减少因高速旋转飞轮带来的陀螺效应和单项扭矩。弹射一次仅使用每台发电机所储备能量的22.5%,飞轮转盘的转动速度从6400转/分下降到5200转/分,能量消耗可以在弹射循环的45秒间歇中从主动力输出中获得补充。四蓄能发电机结构允许弹射器在其中一台发电机没有工作的情况下正常使用。由于航母装备4部弹射器,每两部弹射器的动力组会安装到一起,集中管理并允许其动力交联,因而出现6台以上发动机故障而影响弹射的事故每300年才会重复一次。盘式交流发电机采用双定子设计,分别处于盘的两侧,每一个定子由280个线圈绕组的放射性槽构成,槽间是支撑结构和液体冷却板。采用双定子结构,每台发电机的输出电源是6相的,最大输出电压1700伏,峰值电流高达6400安,输出的匹配载荷为8.16万千瓦,输出为2133~1735赫兹的变频交流电。盘式储能交流发电机的设计效率为89.3%,这已经通过缩比模型进行了验证,也就是说每一次弹射将会有127千瓦的能量以热量形式消耗掉。发电机定子线圈的电阻仅有8.6毫欧,这么大的功率会迅速将定子线圈加温数百度,所以设计了定子强制冷却。冷却板布置在定子的外侧,铸铝板上安装不锈钢管,内充WEG混和液,采用流量为151升/分的泵强制散热。根据1/2模型测试可知,上述设计可以保证45秒循环内铜芯温度稳定在84℃,冷却板表面温度61℃。真正最为关键、技术难度最大的部件是高功率循环变频器。这个技术是电磁弹射器的真正技术瓶颈。EMALS正处于关键性部件工程验证阶段,循环变频器仅仅是完成了计算机模拟,还没有开始发展工程样机。从设计上看,循环变频器是通过串联或者并联多路桥式电路来获得叠加和控制功率输出的,它不使用开关和串联电容器,省略了电流分享电抗器,实现了完全数字化管理的无电弧电能源变频管理输出。其每一相的输出能力为0~1520伏,峰值电流6400安,可变化频率为0~4.644赫兹。循环变频器设计非常复杂,它不仅需要将4台交流发电机的24相输入电能准确地将正确的相位输入到正确的模块端口,还必须准确的管理298个直线电机的电磁模块,在滑块组运行到来前0.35秒内让电磁体充电,而在滑组经过后0.2秒之内停止送电并将电能输送到下一个模块。循环变频器工作时间虽然不长,每次弹射仅需工作10~15秒,但热耗散非常大,一组循环变频器需要528千瓦的冷却功率,冷却剂是去离子水,流量高达1363升/分,注入温度35℃的情况下可确保系统温度低于84℃。美国对这一核心部件的保密工作非常重视,除了基本原理外,几乎没有任何的模型结构、工程图片披露。2003年,美国海军和通用电气公司签订合同,要求花费7年时间完成这一部件的实体工作。到目前为止,美国在海军航母电磁弹射器上花费了28年的时间和32亿美金的经费,预计将在2014年服役的CVN-78航母上正式使用这一设备。从设计和工程实现的关键性部件的性能来看,成功地按时间表投入使用的可能性非常大。主要技术问题出在线形同步电机上,18米所必模型所显示的效率仅为58%,而50米1/2模型显示的效率仅有63.2%,这证明能量利用率还不足,功率也成倍增加,设计是不能完成散热需求的。另外一个问题在于军用系统的防火要求,永磁体对温度比较敏感,存在退磁临界温度,一般在100~200℃之间,航母的火工品较多,火灾事故并不罕见,如何保证磁体的磁强度不受大的影响还是一个很棘手的问题。电磁弹射器功率巨大,其磁场强度也非常可怕,现代战斗机上复杂的电磁设备都非常敏感,容易受到干扰,因此需要特别加强电磁弹射系统的磁屏蔽工作。由于弹射器的磁体是开槽形的,和蒸汽弹射器的蒸汽泄露一样会有很强的磁泄露,所以设计了复杂的磁封闭条,在离飞行甲板15厘米的高度就能将磁场强度降低到正常环境的水准。相关的电磁干扰和兼容性问题将在2012年进行专门的适应性试验。美国预期电磁弹射器达到如下指标:起飞速度:28~103米/秒;最大牵引力和平均牵引力之比:1.07;最大弹射能量:122兆焦;最短起飞循环时间:45秒;重量:225吨;体积:425立方米;补充能源需求:6350千瓦。

5. 电磁弹射器

  1  。电磁弹射器是航空母舰上的一种舰载机起飞装置,是一种正在研究中的下一代飞机弹射装置。
  其工作原理是:直线感应电机的初级(固定部分)通上交流电后,产生交变磁场,这种磁场在直线感应电机的次级(运动部分)产生感应电流,使次级变为有感应电流的导体,这样,处于交变磁场的次级部分就会受到安培力的作用,向前运动。与传统的蒸汽式弹射器相比,电磁弹射具有容积小、对舰上辅助系统要求低、效率高、重量轻、运行和维护费用低廉的好处。


  2.其实要论电磁弹射器与蒸汽弹射器相比,用现代的高速列车与蒸汽机相比是毫不夸张的。
  首先是效率问题,现役的蒸汽弹射器效率只有百分之五,电磁弹射器高达百分之六十,而且没有密如蛛网的高温高压蒸汽管道维修的噩梦,省人又省钱。在军事开资庞大的美军,是有一定意义的。
  其次是电磁弹射实应性更好,电磁飞机弹射系统具有不断监视自身的闭路系统,连续调节速度和功率,以便适应每种飞机机型的弹射剖面。 电磁飞机弹射器除具有较大控制灵活性之外,其重量和大小只相当于蒸汽弹射器的一半。消除了高压、高温蒸汽管路和阀的迷宫将减少值勤作业和战斗危险。由于使用电力电子分系统,电磁飞机弹射系统的维修人员将少30%。 未来电磁飞机弹射系统是模块化的,因此便于维修和改进时不同组件和分系统的交换.
  电磁飞机弹射系统具有更好的性能和和弹射控制范围,适合弹射飞机的范围很广。它将加速飞机的重量约在4.5~45吨,弹射速度在100~370千米/小时之间,控制灵敏度灵活,这是蒸汽弹射器不能达到的。
  还能任意调节弹射推力,哪怕是四吨的无人机,那是蒸汽弹射机一弹就碎的轻巧飞行器——讯息战的新宠,由于弹射动能配置方面的限制,轻型飞机反而更难弹射。而且不能够弹射当前美军使用的无人机。而高性能无人机登上航母是肯定的,由于有人舰载机和无人机大小不一,而蒸汽弹射器又没法调节弹射功率,而且效率太低,一次弹射一般要消耗614千克蒸汽,每次弹射结束都有大量蒸汽被排除,带走大量能量,其效率一般在4%~6%之间。而电磁弹射系统的效率约为60%左右,对能量的需求大为降低。蒸汽弹射器由于功率无法精确控制,在弹射舰载机的过程中,对舰载机的推力上下波动比较大。而电磁弹射系统能够对弹射过程中的力进行精确控制,另外,蒸汽弹射器在飞机脱钩后仍然会维持很高的汽缸压强,对弹射器末端造成极大的冲击,而电磁弹射系统在与飞机脱钩后作用力立刻反向,对弹射系统末端的冲击力远远低于蒸汽弹射器。
  目前的蒸汽动力弹射器不能够用于弹射任何现役无人机,而这被认为是蒸汽弹射器的最大缺陷。信息技术突破性发展以及更轻、更灵巧武器的不断出现,使无人机在“尼米兹”级航母退役之前就可能上舰执行战斗任务。而美国的政治领导层更希望使用无人机作战,以把人员伤亡、被俘的风险降低到零。
  电磁弹射器还可以延长战机的寿命。电磁弹射器的功率可以根据弹射飞机的尺寸重量进行灵活调节,可用于弹射美国海军现在以及未来的各种有人飞机或无人飞机。同时电磁弹射器弹射力非常稳定,弹射过程中,其最大力与平均力的比值仅为1.05,这就大大减轻了弹射过程中飞机机体结构所受到的冲击,有研究表明,电磁弹射器的这一性能最大可使舰载机的机体寿命延长31%。此外,与蒸汽弹射器相比,电磁弹射器的尺寸、重量可降低50%,对人力的需求将减少30%,全寿命周期费用可降低20%,作战可用度可提高20%。
  电磁弹射系统还有一个蒸汽弹射器不具备的优点,那就是它很容易简化为满足短距起降飞机起飞的助跑系统,能很好地与滑跃跑道形状配合,可用于轻型航母或两栖攻击舰上,甚至能够用在任何采用综合电力系统的舰艇上。而蒸汽弹射器的汽缸必须保持直线,不可能装在滑跃甲板上。
  另外,电磁弹射系统构成相对简单。它只用直线电动机进行弹射、制动和使往复车复位,不需要保持常备状态,在完全关闭的冷态条件下不到15分钟内就能达到待用状态。实际将来经验成熟后时间会更短,而蒸汽弹射器要依靠大量的系统和分系统,有液压泵、蒸汽、水力刹车、蓄压器等等,需要你不断给弹射槽预热,蒸汽弹射器的机械磨损严重,尤其是金属密封条,每弹射一次都会与此摩擦一次,更换量大。而电磁弹射系统使用的电力电子元件用无接触的瞬时电磁力,无磨损,可靠性在民用领域已得到检验,寿命都在几万小时,且具容错能力。 可见,如遇紧急情况下,电磁弹射器反应速度远远优于蒸汽弹射器。而且可靠性两者根本没法比。
  还有一个是蒸汽弹射器根本无法相比的性能,那就是电磁弹射器最大弹射50吨战机,最大速度可达400千米/小时,因此它可以在航母无需高速行驶的情况下或无风的情况下起飞战机。而使用蒸汽弹射器的航母,一旦遇到紧争情况,就全指望旁边的伯克级了,所以有人说航母只适宜进攻而不适宜防守是有一定道理的,但是采用电磁弹射将会改变这种观念。

  3。2010年12月20日,电磁弹射器首次成功进行了F/A-18E舰载战斗机的弹射起飞试验。这标志着美国海军电磁弹射项目取得了里程碑式的重大进展。按照计划,“福特”号航母将装备4部电磁弹射器。最后一部电磁弹射器组件应于2014年初交付,从而保证在2015年初在舰上进行4部电磁弹射器的验证试验,为“福特”号航母在2015年9月交付美国海军做好准备。美国突破电磁弹射器技术给其他国家提出新挑战 。
  电磁弹射器欧洲自己基本用不着,对外卖又是极为困难的一件事情,再算上费用分摊时扯皮的恶习,所以他应当是没什么动力。
  俄罗斯军备更新方面历来计划宏伟、过分长远,典型的画大饼型,不过俄罗斯也可能会不干落后,尤其在普京重新上台以后。
  据可靠消息,中国也有类似的计划,但是到哪一步了就不清楚了,随着中国全球利益的增多尤其是中国还拥有如此广阔的海域,在没有强大舰载机的保护下,仅凭几艘战舰或几艘潜艇是根本无法胜任的。而且现代海战中,没有战机的参与是无法想象的。

电磁弹射器

6. 电磁弹射器的介绍

电磁弹射器是航空母舰上的一种舰载机起飞装置,已由美国最新下水的(2013年10月11日)福特号航母首先装备。与传统的蒸汽式弹射器相比,电磁弹射具有容积小、对舰上辅助系统要求低、效率高、重量轻、运行和维护费用低廉的好处。是未来航空母舰的核心技术之一。

7. 中国的电磁弹射技术如何呢?

我国的电磁弹射器比美国在福特级上使用的电磁弹射器要先进多了。美国虽然电磁弹射器已经随着福特号航母服役了,但是由于美国电磁弹射器存在各种故障和问题,导致福特号航母迄今为止还只是一艘直升机航母,并不能搭载战斗机,毕竟弹射器的问题多到让军方不敢轻易使用。

图为我国建设的电磁弹射器地面测试系统。
我国的电磁弹射器却不同,他的研发总师马伟明曾经说过,我国的电磁弹射器要比美国领先很多,我想这样的权威表述并不需要更多的修饰了。美国的电磁弹射器存在放功不均匀的情况,要知道蒸汽弹射器是一次做功,然后能量随着滑轨的前进逐步消耗,弹射的速度在轨道上是一次爆发后一直匀速降低的,飞行员还是比较好适应的。但是电磁弹射器是一直秩序在滑轨上释放能量,飞机处于不断的加速过程,如果这个加速是不均匀的加速,那么飞行员就要头晕眼花难以应付了。

图为出现在中船重工会议室里的003航母设想图。可见其搭载有3部电磁弹射器。
美国的电磁弹射器就出现了那样的问题,这体现出美国电磁弹射器不成熟的地方,也是当初设计的时候忽略了的地方,只考虑了弹射质量、反复弹射的稳定性和功率释放等问题,却忽视了人的影响和感受,让飞行员在一个加速不均匀的弹射器上摇摆,怕不是想要了飞行员的命。也因此,美国勒令福特号停止实机弹射,等到故障彻底排除后才能真正具备正常使用的能力。

图为根据中船重工会议室出现的003照片刻画出的003外观。
我国的电磁弹射器是马伟明团队的重大研发成果之一,已经在陆地上进行了上万次的弹射测试,也进行了实机弹射测试,曾经在那里拍到了歼15弹射型战斗机的画面。这说明我国在电磁弹射器上虽然进步很大,但是并不冒进,非常谨慎,多个地面测试基地同时使用,也印证了我国不断排除各种故障,解决不同问题,设计不同构型的研究手段。我国很可能就在003型航母上装备电磁弹射器,甚至如果进度够快,我国将会先于美国实现航母上的实机和真人弹射测试。

如今的我国海军已经拥有两艘航母,图为001和002。
所以,历史的发展就是这样的螺旋状上升和波浪式前进。我国的电磁弹射器虽然起步较晚,但是进步很快,取得的成就也更大,美国倒是应该在这个方面向我们多多学习了,也让我们祝福我们的电磁弹射器一切顺利。

中国的电磁弹射技术如何呢?

8. 中国的电磁弹射技术如何呢?

马伟明获得了“2016年度科技创新人物”荣誉,他透露,中国电磁弹射技术研究已获成功。中国目前的电磁弹射技术理论水平处于世界领先地位,采用不同于美国的技术路线,但在工程应用方面落后于美国。

新闻报道上说,我国的电磁弹射应该属于世界领先,因为美国的最新航空母舰就是因为电磁弹射出了问题。据说是,瞬间电流达不到要求,这个等我们的上003航母以后就知道了。马伟明院士是一个值得尊敬的科学家!因为像电磁弹射这种东西,它不可能像量子科技那样让人云里雾里,感觉不到希望。他是成型的,到用的时候就必须装上去。所以这个没有什么好怀疑的,应该就是世界先进。
马伟明是不可多得的人才,重大军用装备的研发带头人,中科院院士、海军少将。他带领的团队将军舰配电系统集成水平推进了三十年,填补了我国舰载机弹射系统的空白,多次获得国家科技大奖。

辽宁舰、山东舰这两艘航母的舰载机,是我国自己设计制造的歼15战斗机。歼15战机是属于三代半战机。我国的辽宁舰、山东舰两艘航母是采用蒸汽滑跃式技术起飞战机,还没有装备先进的电磁弹射器起飞战机。目前我国的003号航母己完成了百分之七十多的工程,估计明年上半年就能下水试航。003号航母采用了国际先进的电磁弹射器起飞战机。题主所问我国的电磁弹射器如何?我国的电磁弹射器是马伟明院士发明创造的,于2016年试验成功,而且还领先美国的电磁弹射器技术一代。


电磁弹射器的工作原理是载流导线在磁场中受力,利用磁通量巨大的瞬间变化而产生的感应电磁斥力将飞机弹射升空。我国的003号航母将采用世界最先进新的一代电磁弹射器起飞歼15战机。平均每分钟能起飞两架战机,比蒸气滑跃式起飞快一倍,即省时省力,又节省成本。用电磁弹器弹射起飞战机,一天能起飞300多架战机。电磁炮己安装在我国不少的战舰上,又进一步加强了我国海军的战斗力。