微分方程数值解

2024-05-05 23:43

1. 微分方程数值解

顾名思义,就是方程的数值结果。

微分方程的解,分为解析解和数值解,前者反映的是微分方程的解,可以用一个函数表示;后者同常不能表为初等函数,但是很多问题,我们并不需要解析解,而是能求出一个数值结果就满足了。

举例说,我们希望知道,一个质点从竖直平面内的光滑半圆轨道一端,从静止开始下滑,求质点转过45度经历的时间.这个问题导致一个貌似很简单的一个微分方程:

y'=1/sqrt(sin(x)),即导函数为正选函数平方根的倒数,其解析解不能表示为初等函数形式,但是对于这个问题,我们倒是可以得到任意精确的数值解。

微分方程数值解

2. 求微分方程的数值解

dy/dt= -100y -1
那么
dy/(-100y-1)=dt
即d(-100y-1) /(-100y-1)= -100dt
所以积分得到
ln|-100y-1|= -100t + C
t=0时y=1
即ln101=C
所以
ln|-100y-1|= -100t +ln101
即
100y+1=e^(-100t +ln101)=101e^-100t
于是
y=101/100 e^-100t -1/100
就是你要的答案

3. 微分方程数值解

微分方程数值解法如下:
1、欧拉法。
通过逐步计算来求得微分方程的近似解。

举例,在运动学中,位置x与速度v之间的关系 dx/dt = v, 在欧拉法中可以近似为Δx/Δt=v, 这里的Δt是时间间隔,在游戏中一般是1/60秒。 将当前的位置表示为Xn, 上一次步长表示为Xn-1,则:
(Xn - Xn-1)/Δt=v,   即Xn = Xn-1 + v*Δt,
同理,速度与加速度之间的关系:

Vn = Vn-1 + a*Δt,
将两个式子并列起来:
这里第一个等式中的v可以直接使用第二个等式中的Vn或Vn-1。
2、龙格-库塔法(Runge-kutta methods)。
3、线性多步法(Linear multistep method)。

微分方程数值解

4. 微分方程求数值解

微分方程的解
微分方程的解通常是一个函数表达式y=f(x),(含一个或多个待定常数,由初始条件确定)。
例如:,其解为:,其中C是待定常数;
如果知道,则可推出C=1,而可知 y=-\cos x+1,
一阶线性常微分方程
对于一阶线性常微分方程,常用的方法是常数变易法:
对于方程:y'+p(x)y+q(x)=0,可知其通解:,然后将这个通解代回到原式中,即可求出C(x)的值。
二阶常系数齐次常微分方程
对于二阶常系数齐次常微分方程,常用方法是求出其特征方程的解
对于方程:
可知其通解:
其特征方程:
根据其特征方程,判断根的分布情况,然后得到方程的通解
一般的通解

5. 初学微分方程求解


初学微分方程求解

6. 微分方程数值解

答案如图所示

7. 微分方程的解怎么求啊?

微分方程的解根据方程类型而定,以下为具体解法。
一、一阶微分方程
1.可分离变量方程
若一阶微分方程y'=f(x,y)可以写成dy/dx=p(x)q(y),则称之为可分离变量方程,分离变量得dy/q(y)=p(x)dx,两边积分∫dy/q)(y)=∫p(x)dx即可得到通解。
2.齐次方程
将齐次方程通过代换将其化为可分离变量方程。令u=y/x,即y=ux,则dy/dx=u+x*du/dx,齐次方程dy/dx=φ(y/x)化为u+x*du/dx=φ(u),分离变量得du/φ(u)-u=dx/x,两边积分
∫du/φ(u)-u=∫dx/x后即得齐次方程的通解。
3.一阶线性方程
对于一阶线性方程y'+P(x)y=Q(x)的通解为y= e ^-∫P(x)dx (∫Q(x)*e ^∫P(x)dx+C)
4.伯努利方程
伯努利方程y'+P(x)y=Q(x)y^n(n∈R,n≠0,1)的通解为z=y^1-n= e ^-∫(1-n)P(x)dx (∫(1-n)Q(x)*e ^∫(1-n)P(x)dx dx+C)

二、可降阶的二阶微分方程
 y”=f(x)型方程——缺y,y'对于此类方程,只要连续积分两次,即可得原方程的通解.
y”=f(x,y')型方程——缺y令y'=p,则y''=p'=dp/dx,原方程降为p(x)的一阶方程p'=f(x,p).设其通解为p=φ(x,C1),即y'=φ(x,C1),两边积分即可得原方程的通解y= ∫φ(x,C1)dx+C2.
y”=f(y,y’)型方程——缺x具体变换过程如下:令y'=p,则y''=p'=dp/dx=p*dp/dx,原方程降为一阶方程p*dp/dy=f(y,p)设其通解为p=φ(y,C1),分离变量有 dy /φ(y,C1)=dx,两边积分即得其通解为∫dy/φ(y,C1)x+C2

三、二阶线性微分方程
二阶常系数齐次线性方程y''+py'+qy=0,根据其特征方程r^2+pr+q=0根不同情况,其通解有以下三种形式:
(1)特征方程r2+pr+q=0有两个不相等的实根 r1,r2时,通解为Y=C1e^r1x+C2e^r2x
(2)特征方程r2+pr+q=0有两个相等的实根r时,通解为Y=(C+C2x)e^rx
(3)特征方程r2+pr+q=0有一对共轭复根r=a±iβ时,通解为Y=e^αx *(C1cos βx+C2sin βx).

微分方程的解怎么求啊?

8. 微分方程有没有数学解?

这个可能性很小,大部分都没有结果。只有很少的一部分人走到了最后。



微分方程的数学理论是和方程对应的科学领域一起出现,而微分方程的解就可以用在该领域中。不过有时二个截然不同的科学领域会形成相同的微分方程,此时微分方程对应的数学理论可以看到不同现象后面一致的原则。
微分方程的约束条件是指其解需符合的条件,依常微分方程及偏微分方程的不同,有不同的约束条件。
常微分方程常见的约束条件是函数在特定点的值,若是高阶的微分方程,会加上其各阶导数的值,有这类约束条件的常微分方程称为初值问题。
若是二阶的常微分方程,也可能会指定函数在二个特定点的值,此时的问题即为边界值问题。若边界条件指定二点数值,称为第一类边值条件,此外也有指定二个特定点上导数的边界条件,称为第二类边值条件等。
偏微分方程常见的问题以边界值问题为主,不过边界条件则是指定一特定超曲面的值或导数需符定特定条件。
微分方程的理论和差分方程的理论有密切的关系,后者的座标只允许离散值,许多计算微分方程数值解的方法或是对于微分方程性质的研究都需要将微分方程的解近似为对应差分方程的解。
若微分方程中没有出现自变数及微分项的平方或其他乘积项,也没有出现应变数及其微分项的乘积,此微分方程为线性微分方程,否则为非线性微分方程。