水泥的加工过程是什么?

2024-05-08 10:39

1. 水泥的加工过程是什么?

工艺流程

1、             破碎及预均化

    (1)破碎    水泥生产过程中,大部分原料要进行破碎,如石灰石、黏土、铁矿石及煤等。石灰石是生产水泥用量最大的原料,开采后的粒度较大,硬度较高,因此石灰石的破碎在水泥厂的物料破碎中占有比较重要的地位。

    (2)原料预均化   预均化技术就是在原料的存、取过程中,运用科学的堆取料技术,实现原料的初步均化,使原料堆场同时具备贮存与均化的功能。

        2、生料制备

    水泥生产过程中,每生产1吨硅酸盐水泥至少要粉磨3吨物料(包括各种原料、燃料、熟料、混合料、石膏),据统计,干法水泥生产线粉磨作业需要消耗的动力约占全厂动力的60%以上,其中生料粉磨占30%以上,煤磨占约3%,水泥粉磨约占40%。因此,合理选择粉磨设备和工艺流程,优化工艺参数,正确操作,控制作业制度,对保证产品质量、降低能耗具有重大意义。

   3、生料均化

新型干法水泥生产过程中,稳定入窖生料成分是稳定熟料烧成热工制度的前提,生料均化系统起着稳定入窖生料成分的最后一道把关作用。

4、预热分解

   把生料的预热和部分分解由预热器来完成,代替回转窑部分功能,达到缩短回窑长度,同时使窑内以堆积状态进行气料换热过程,移到预热器内在悬浮状态下进行,使生料能够同窑内排出的炽热气体充分混合,增大了气料接触面积,传热速度快,热交换效率高,达到提高窑系统生产效率、降低熟料烧成热耗的目的。

    (1)物料分散

换热80%在入口管道内进行的。喂入预热器管道中的生料,在与高速上升气流的冲击下,物料折转向上随气流运动,同时被分散。

(2)气固分离

当气流携带料粉进入旋风筒后,被迫在旋风筒筒体与内筒(排气管)之间的环状空间内做旋转流动,并且一边旋转一边向下运动,由筒体到锥体,一直可以延伸到锥体的端部,然后转而向上旋转上升,由排气管排出。

(3)预分解

 预分解技术的出现是水泥煅烧工艺的一次技术飞跃。它是在预热器和回转窑之间增设分解炉和利用窑尾上升烟道,设燃料喷入装置,使燃料燃烧的放热过程与生料的碳酸盐分解的吸热过程,在分解炉内以悬浮态或流化态下迅速进行,使入窑生料的分解率提高到90%以上。将原来在回转窑内进行的碳酸盐分解任务,移到分解炉内进行;燃料大部分从分解炉内加入,少部分由窑头加入,减轻了窑内煅烧带的热负荷,延长了衬料寿命,有利于生产大型化;由于燃料与生料混合均匀,燃料燃烧热及时传递给物料,使燃烧、换热及碳酸盐分解过程得到优化。因而具有优质、高效、低耗等一系列优良性能及特点。

4、水泥熟料的烧成

生料在旋风预热器中完成预热和预分解后,下一道工序是进入回转窑中进行熟料的烧成。

在回转窑中碳酸盐进一步的迅速分解并发生一系列的固相反应,生成水泥熟料中的 、 、 等矿物。随着物料温度升高近 时, 、 、 等矿物会变成液相,溶解于液相中的 和 进行反应生成大量 (熟料)。熟料烧成后,温度开始降低。最后由水泥熟料冷却机将回转窑卸出的高温熟料冷却到下游输送、贮存库和水泥磨所能承受的温度,同时回收高温熟料的显热,提高系统的热效率和熟料质量。

5、水泥粉磨

水泥粉磨是水泥制造的最后工序,也是耗电最多的工序。其主要功能在于将水泥熟料(及胶凝剂、性能调节材料等)粉磨至适宜的粒度(以细度、比表面积等表示),形成一定的颗粒级配,增大其水化面积,加速水化速度,满足水泥浆体凝结、硬化要求。

6、水泥包装

水泥出厂有袋装和散装两种发运方式。

水泥的加工过程是什么?

2. 新型干法水泥生产时为何增设分解炉?

增设窑外分解炉,充分利用窑内排出的余热,使生料预热并达到大部分的碳酸钙先行分解,从而达到节能降耗、提高煅烧效率的目的。

3. 水泥生产中煤在分解炉燃烧怎么办

一般说的烟室是指回转窑与分解炉的连接转接体,也就是烟室侧面是连接回转窑,烟室顶部是连接分解炉,烟室里是没有燃烧存在的。燃烧室应该是指分解炉的组成中的一部分,因为分解炉要喷入燃料,一般是在分解炉下部。

水泥生产中煤在分解炉燃烧怎么办

4. 水泥厂煤磨操作员考试题目及答案

煤磨试题
1、袋收尘器防护措施有温度监控、气体分析仪、防静电、防爆阀。
2、蓄能器主要作用:减少阻尼震荡、保压。
3、我们公司煤磨机型号有 MPF1713 、MPF2116 MPF1713设计能力20t/h,MPF2116设计能力40t/h;料层在 60-100 mm,绝对不允许 空磨启动,如果磨内料层过低,应考虑采用磨内布料。
4、磨机在运行中振动值达  4mm    低报警,振动值   6 mm          磨机跳停;
5、稀油站低压压力小于0.12MPa备用泵开启,大于0.40MPa备用泵停止运行;
6、立磨兼有烘干、破碎 、粉磨、选粉、输送五项功能;
7、罗茨风机启动前出口挡板打开 ,离心风机启动前出口挡板关闭;
8、煤磨分离器(从下往上看)为逆时针方向,与磨盘旋向相同;
9、袋收尘清灰方式可以分为机械式和脉冲喷吹式;
10、风机挡板三对应有挡板开度与执行机构、执行机构与中控的对应、中控与挡板开度的对应  ;
11、三级巡检包括现场巡检 、中控巡检 、技术点检;
12、润滑油对减速机作用主要有润滑、降温两种;
13、循环负荷率是指选粉机的回粉量与成品量之比;
14、磨主机吐渣量过多与喷口环的旋风方向、风速有关;
15、为防止氮气蓄能器皮囊的破坏,液压张紧的工作压力与氮气的预充压力有  3:1  比例关系;
16、蓄能器主要利用刚性 、流阻性能来达到保压和缓冲磨辊冲击力的作用;
17、MPF1713煤磨机有两个密封风机,一个供磨辊,另一个供分离器 ;
18、三道锁风阀分三道,其各道阀主要作用,第一道截断物料,控制进料量和时间;第二道锁风不于物料接触;第三道 即起锁风又起卸料。
19、原煤自燃必须具备充沛的氧气、燃点两种条件;
20、三个张紧杆一方面是联接液压缸,另一方面是传递研磨压力。
21、通知现场根据升温曲线调整喷油量,使火焰活泼有力,无油滴落下;
22、MPF1713煤磨机入磨物料粒度≤30mm,入磨最大水份≤20%;
23、MPF1713煤磨机在启动前,磨内要升温预热,出口处温度缓慢升至65℃±5℃左右,持续0—1.5小时,[注:在冷磨时即磨停机大于24小时经升温1—1.5小时],热磨时不需要升温预热,开磨时出现温度缓慢上升;
25、磨机在正常操作中,可以通过调节分离器转速和磨内风速来调整出磨煤粉的细度;
26、用热风炉操作时,起动主排风机,保持入磨负压小于-100Pa,防止点火后火焰拉熄;
27、煤磨机的烘干热源来自窑头蓖冷机,温度在300—400℃左右,在任何情况下,入磨风温不得超过350℃;一般在250℃—300℃;
28、如遇突发性停窑,关闭仓上所有阀门,向仓内充氮气,当停窑超过24小时,应向煤粉仓内铺盖生料粉,用量在5吨左右;
29、煤磨张紧站系统不保压的表现及原因?
答:张紧站不保压表现为,电机频繁启动,压力波动大,油箱发热。 原因:(1)液压缸缸头密封或活塞杆密封损坏,造成泄漏;(2)蓄能器压力低或皮囊损坏及回形阀损坏;(3)张紧缸上直动溢流阀失灵,处于溢流状态。(4)液压站上先导式溢流阀失灵,处于溢流状态。
30、设备要保持清洁,做到“四无”“六不漏”,“四无”是指无积灰、无杂物、无松动、无油污;“六不漏”指不漏油、不漏水、不漏气、不漏电、不漏风、不漏灰。
31、一期煤磨张紧液压系统最大工作压力为11.5mPa,当升起磨辊时所需油压力为4.0mpa。
32、罗茨鼓风机的升压是鼓风机排气压力与进气压力之差,罗茨鼓风机压力表通常安装风机进气口、排气口以便对风机运行状况进行检测。罗茨鼓风机在排气管路上设置旁通支路,打开旁路阀门即可对 排气进行分流 ,从而减小流入系统的流量,旁路调节分为放空和打回流两种情况。
33、简述蓄能器的功用。:(1)作辅助动力源(2)保压和补充泄漏(3)缓和冲击,吸收压力脉动。
34、分析袋收尘脉冲阀不工作原因及排除方法。
答:原因可能为(1)电源断电或漏灰控制器失灵;(2)脉冲阀内有杂物;(3)电磁阀线圈烧坏;(4)压缩空气压力太低。
排除方法:(1)恢复供电,修理清灰控制器;(2)仔细清理脉冲阀;(3)更换电磁阀;(4)检查气路系统及压缩机,确保压力正常。
35、试分析袋收尘运行阻力大原因及排除方法。
答:原因可能(1)烟气结露粉尘糊袋子;(2)脉冲阀不工作;(3)脉冲阀工作时提升阀未并阀;(4)压缩空气压力太低;(5)一个或多个提升处于关闭状态。
排除方法:(1)堵塞漏风,提高烟气温度;(2)清理或更换;(3)检查提升阀或清灰控制器;(4)检查气路系统及空气压缩机;(5)检查提升阀或清灰控制器。
36、分析磨机差压过大原因。
答:(1)喂料控制装置故障,喂料过多;(2)磨盘部喷口环堵塞;(3)风量小或不稳定;(4)分离器转逆高。
37、煤磨密封风机有哪些作用?
答:(1)可以阻挡大块物料;(2)可以让主轴与密封之间有足够小的间隙来形成一定的密封风管压力,以避免脏物进入轴承。
38、煤磨张紧站的功能有哪些?
答:(1)为磨辊施加合适的碾磨压力,升起和落下磨辊。
39、分析煤磨张紧液压站油箱温度高的原因及处理。
答:原因:(1)液压缸密封损坏,造成不保压,使张紧站电机一直处于开启状态;(2)张紧站油泵压力上限设定值大于溢流阀调定压力,使油泵电机一直处于开启状态;(3)冷却水阀坏,造成冷却不及时。
处理方法:(1)检查出不保压的液压缸,择机更换液压缸总成或液压缸密封;(2)重新设定压力上限值使其小于溢流阀调定压力;(3)检查冷却水阀坏原因作出相应处理。
40、蓄能器的作用是什么?
答:短期大量供油;系统保压;应急能源;缓和冲击压力;吸收脉动压力。
41、煤磨溢流阀的主要作用是什么?
答:在定量泵节流调速系统中,用来保持液压泵出口压力恒定,并将多余的油溢回油箱起定压和溢流作用,在系统中起安全作用,对系统过载起保护作用。
42、换向阀在液压系统中起什么作用?
答:换向阀是利用阀芯和阀体之间的相对运动变换油液流动的方向,或者接通和关闭油路,从而改变液压系统的工作状态。
43、罗茨风机异音大的原因?
答:(1)同步齿轮和转子的位置失调;(2)轴承磨损严重(3)升压波动大(4)齿轮损伤(5)安全阀反复启动(6)逆止阀损坏
44、工艺流程简述:
进厂原煤由装运码头卸船机卸下,经3101皮带机由3104堆料机堆到堆场,并进行均化,然后由3107侧式取料机取出经3108皮带机,通过3111下料口下至3121皮带机,并由3110除铁器除铁后,送至3123皮带机,通过3124下料口进入3801原煤仓或通过2107侧臂取料机刮取原煤,再通过2119、2120、3121、3123,通过3124下料口进入3801原煤仓。
原煤仓的原煤,经过仓下棒形阀,再落到3(4)802定量给料机,由3(4)802三道锁风阀喂入3(4)804煤磨的磨盘上,并在转动的磨盘上由离心力作用向磨盘边缘运动,运动过程中受到磨辊压成为细粉。在边缘溢出,由篦冷机来的热风从喷口环处吹出,将溢出的细粉扬起,并进行烘干。细粉随热风带入立磨上部分离器处,由分离器分离,粗粉经落料斗落到磨盘上,细粉和废气进入3(4)832袋收尘器,由袋收尘收集下来的煤粉,经过3(4)818回转下料器由3(4)817螺旋输送机,经过3(4)817气动闸阀分别卸入3(4)820(2)窑头煤粉仓和3(4)820(1)分解炉煤粉仓中,再经3(4)827、3(4)825罗茨风机送风,由菲斯特秤计量被连续送入窑头燃烧器和分解炉中。为防止煤粉仓、袋收尘器发生火灾,本系统设置了充N2灭火装置,分别为煤粉仓和袋收尘器灭火。同时,在袋收尘器、出磨风管和煤粉仓上都设置了防爆阀。
45、用热风炉操作时:
1)关闭冷却机的热风挡板;2)打开热风炉挡板,起动出口设备及综合控制柜;3)起动主排风机,保持入磨负压小于-100Pa,防止点火后火焰拉熄;4)通知现场点热风炉,调节热风炉油流量,保持磨出口温度超过65℃;
46、启动前的准备
1)通知现场巡检人员进行开机前的检查,确认系统内所的设备具备安全运行条件。
2)现场设备润滑的检查,减速机稀油站、液压系统油站的油量、油温是否合适,各润滑点是否加油,如油温过低需现场启动油泵及加热器进行循环加热,此项工作应在磨机起动前3小时进行;
3)现场设备内部有无杂物,无自燃现象,人孔门是否密封,设备周围是否有人工作,是否有异物影响设备运转,各设备处于完好状况;
47、报警值:
1)减速机振动>5mm/s;
2)减速机油站油位低于下限或高于上限报警油位;
3)减速机油站粗过滤器压差△P≥0.08Mpa;
4)减速机油站精过滤器压差△P≥0.05Mpa;
5)减速机油站油温<32℃;
6)减速机低压出口油压P<0.12Mpa时报警,同时备用泵电机启动;当油压P≥0.4Mpa时,备用泵停;当P>0.5Mpa时报警;
7)减速机内5个轴承温度之一T>60℃;
8)减速机液压站油温 T>55℃;
9)减速机换热器压差△P≥0.1Mpa;
10)张紧滤油器差压△P≥0.35Mpa;
11)液压站油位低报警;
12)磨辊轴承测温T>95℃;
13)三道锁风阀液压站滤油器压差△P≥0.35Mpa;
14)三道锁风阀液压站控制器油位低;
15)密封风机压力P<3500Pa;
48、跳停值:
1)减速机振动>10mm/s;
2)减速机稀油站油位下下限;
3)减速机稀油站低压出口油压<0.1Mpa;
4)减速机5个轴承温其中一个t>65℃;
5)张紧油站油位低于下下限;
6)张紧压力≤6Mpa;
7)三道锁风阀油站油位低于下下限;
8)分离器油温>65℃
9)磨辊轴承T>100℃
49、 煤磨正常操作参数
9.3.1、出口温度70℃±5(在分离器正常状况下);
9.3.2、入口负压—300±100Pa;
9.3.3、袋收尘压差在≤2500Pa;
9.3.4、断煤立即关闭热风,便于安全运行;
9.3.5、分离器速度85rpm±10rpm
9.3.6、入磨温度<350℃
9.3.7、出磨负压5000Pa±1000pa
9.3.8、磨机振动<2mm/s
名称
现  象
原    因
处 理 方 法
50磨
机
振
动
跳
停
振动值骤然变化≥10mm/s
1、喂料量过大
1、减小喂料量
2、磨内料层过厚
1、调整喂料量;2、调整风量;
3、调整液压站压力;4、调整分离器速度。
3、入磨物料粒径较大,有铁块等异物
1、减少喂料量;2、检查除铁器的除铁效果。
4、磨风量不稳过小
1、调整主风机挡板开度;2、稳定出磨气体温度。
5、喷口环堵
检查清理喷口环及刮料腔
6、张紧压力过高或过低
调整张紧压力
7、出磨温度骤然变化
注意入口气体温度变化,并检查入磨进风口积料情况,及时调整出磨温度,三道阀检查,入磨皮带检查,各挡板工作情况
8、导向板螺栓松或限位板螺栓松
紧
9、来料波动大或断料
保持下料顺畅
10、三个拉紧杆预充氮压力过高或不平衡
重新调整氮气囊的充氮压力
11、测振元件失灵
通知仪表人员检查修理
12、三道闸阀不动作或堵塞
现场清堵或检查三道闸阀液压站
51磨内差压过高
磨内压差持续超过正常值
1、入磨粒度过大,喂料量过大
调整喂料量
2、拉紧力低
调整液压站张紧压力
3、分离器转速高
降低分离器速度 
4、系统排风不畅
通知现场检查系统管道及各挡板
5、入磨物料易磨性差
调整液压站压力,调整喂料量
52煤粉仓温度过高
煤粉仓温>70℃
1、自燃
停磨关闭煤粉仓进仓挡板和仓上部所有挡板,拉空煤粉仓,如有明火,停主排风机,充氮气,检查袋收尘滤袋
2、出磨温度高
3、袋收尘有自燃现象
53排渣异常
排渣量超过正常量的一倍以上
1、磨机过载,喂料量过多,导致料床超厚
减小喂料量
2、系统风量小
加大磨内风速,检查进风口积料
3、漏风
补焊
4、磨辊及磨盘衬板磨损严重
更换衬板
5、研磨压力过小
调整研磨压力
6、喷口环磨损过大
用盖板调整喷口环面积
54、煤磨:在工艺设计中已考虑到烧成系统的喂煤量有变化这一情况,可以通过调节3(4)802的转速来控制喂料量,使磨机产量与烧成用煤量基本同步,这样可以避免煤粉过剩或不足时引起的操作不稳定和危险。磨机的烘干热源来自窑头篦冷机,温度在300~400℃左右,由冷风阀3(4)808调节入磨风温,在任何情况下,入磨风温不得超过350℃;一般在250℃~300℃;运转时,应使磨出口气体温度保持在65℃∽75℃范围内。
55袋收尘器:袋收尘器在设备运行中灰斗的温度达到一定值时报警(70℃),应通知现场检查灰斗是否积煤粉和漏风,如有自燃应停主排风机,关闭主排风机挡板,从顶部和灰斗处喷入N2气体,等恢复正常将灰斗内自燃的煤粉排出煤粉仓。
56煤粉仓:煤粉仓装有压力传感器,能直观显示煤粉量的多少,在正常操作中应使煤粉保持一定值,可防止因煤粉贮存过多或不足而引起操作不正常。煤粉仓中煤粉的的温度应控制在70℃以下,应拉仓正常情况每周四白班1号磨拉仓一次,周五白班2号磨拉仓一次。
57充氮气,如遇突发性停窑,关闭仓上所有阀门,向仓内充氮气,当停窑超过24小时,应向煤粉仓内铺盖生料粉,用量在5吨左右;
58主要工艺设备技术参数
煤磨(3804、4804)
型号:MPF1713           生产能力:20t/h
磨盘直径:1713mm       磨盘转速:28.6rpm  
电机型号:YMPS400-6    功率:355KW    电机转速:990r/min    
10.2.2、煤磨袋收尘(3832、4832)
型号:FGM96-2×8cm        数量:16室       过滤面积1494 m2
进口温度<120℃  处理风量:81000m2/h     过滤阻力:≤2000pa
进口含尘浓度: ≤500g/Nm3        出口含尘浓度:≤50mg/ Nm3
58、磨料磨损:是指硬的颗粒或硬的突出物在摩擦过程中引起材料脱落的现象。
59、筛余曲线:以筛余的百分数为纵坐标,以磨机长度为横坐标,将各取样断面上混合样的筛余百分数,对应取样断面在磨机长度方向的位置绘点,将点连成曲线即筛余曲线。
60、磨机运转率:是指生产过程中磨机的运转时间跟总时间的比。
61、选粉效率:是指选粉后成品中所含细粉量与喂入选粉机物料中细粉量之比。
62、循环负荷率:是指选粉机的回粉量与成品量之比。
63、预均化堆物原理:已破碎的矿物原料尽可能地以最多的相互平行和上下重叠的同厚度的料层堆成料堆,接着用专门设备重新取料。在取料时,设法垂直于料层的方向,尽可能同时切取所有料层,依次均取,这样,取出的原料比堆放时均匀得多,达到预均化的效果。
64、均化效果:也称为均化效率,是指进入均化设施时物料中某成分的标准偏差与卸出均化化设施时物料中某成分的标准偏差之比。
煤水分。(4)现场人员准备完毕后,按下“准备检查”按钮,确认设备准备就绪。(5)通知代表人员对料位检测管路进行扫气和检查。
65、煤粉发生爆炸必须具备的四个条件是什么?
答:(1)可燃性物质高度分散。(2)气体可燃性物质的浓度在可爆炸极限之内。(3)可爆炸气体到达可爆的温度。(4)存在火源。
66、现场如何调整粗粉分离器来控制煤粉细度?
答:调整粗粉分离器主要是调其叶片的角度来达到目的,叶片角度的可调范围为0°-90°,角度调大则煤粉细度变粗,角度调小则煤粉细订变细。
67、电收尘灰斗温度高时如何操作?
答:①灰斗积灰但没有着火时可通知现场处理,适当减小喂煤量,减少排风。现场处理完毕恢复正常操作。②如果灰斗着火,立即紧急停车,将电收尘的前后阀板关闭,灰斗下绞刀反转,向内喷CO2灭火。68转子称开启,前提条件除将转换开关打至现场,还必须使远程联锁信号中控解和罗茨风机开启。中控开转称必须使罗茨风机开启 , 秤备妥,中控驱动条件满足才能使称开启。
69、皮带保护有跑偏,拉绳,打滑,堵料,撕裂,料流等。
70、80米堆取料机报警停机信号有16度夹角,21度夹角,电机过载,过滤网堵塞,悬臂上极限,二极跑偏,打滑等。
71、取料机料耙行走保护是左右极限限位保护和电机过载保护。
72、堆取料机控制方式有中控,机上自动,机上手动和机旁手动四种。
72、堆撩机是有堆料皮带,悬臂皮带,悬臂升降三部分组成的。
取料机是有刮板,耙车,大车行走三部分组成的。
73分离器强制润滑泵的主要作用是什么?立磨磨辊热电阻的作用是什么?
答:分离器强制润滑泵的主要作用是对分离器减速机齿轮进行润滑,降温。立磨磨辊热电阻的作用:检测磨辊轴承的温度,以防温度过高烧毁轴承。
74、袋收尘的工作原理是什么?
答:袋收尘的工作原理是含尘气体从收尘器进出风箱体中的进风口进入经斜隔板转向至灰斗,同时气流速度慢,由于惯性作用,气体中的粗颗粒粉尘落入灰斗;细小尘粒随气流折而向上进入过滤室,粉尘附着于滤袋的外表,由室顶的脉冲阀对各室滤袋轮流进行分室停风气箱脉冲清灰,净化后的气体透过滤袋进入上部清洁室,由各分室清洁室汇集经过风口,由收尘系统的主风机吸出而排入大气。
75、顶式侧取式堆取料机由堆料部分、取料部分和中心立柱组成。
76、刮板取料机由链板和取料机回转机构、卷扬组成。
77、刮板取料机的保护有仰角高位、仰角低位、仰角上极限、仰角下极限、断链保护、左侧防撞开关、右侧防撞开关、堵料开关、仰角高位,仰角上极限。
78、取料臂与堆料臂的极限夹角为53度和306度。
79、取料机与料传之间的4个角度控制开关,分别设置为0度、90度、180度,244度。
80、取料机的故障信号有取料机变频器故障、取料右侧撞物、取料机左侧撞物、取料臂下极限、取料机下极限、卷扬吊车故障、刮板中机过载、刮板断链、急停、溜槽堵塞,堆取料机极限夹角。
81、取料机大臂变副主要有吊车卷扬完成,他可以实现快、慢两种速度。
82、堆料机有皮带、悬臂加转、悬臂升降组成。
83、堆料机胶带保护装置主要有打滑、双向拉绳,跑偏开关。
84、堆取料机的故障信号有两种,一种是报警不停机的,分别是皮带一级跑偏、上部干油泵油位低、中位干油泵油低另一种报警停机是堆取机板限夹角、急停、拉绳、皮带电机过载、极限料锤触料、皮带二级偏,回转变频器故障。
85、堆料机前方的两个触料开关,分别是正常触料,极限触料。
86、YG250/80混匀堆取料的“Y”表示圆形料场堆取料机,G表示刮板式,250表示取料能力,80表示料场直径。
87、胶带机的驱动机温升不应大于40℃,最高油温不得大于65℃。
88、胶带机的胶带运行是否对中,跑偏不应大于50㎜,若出现胶带跑偏现象应及时分析跑偏原因进行纠偏处理。
89、MPF2116中速磨煤机起动技术数据中密封风机与一次风间压差应大于2000Pa,分离器出口温度大于55℃。
90、MPF2116中速磨煤机停机技术数据中液压站供油压力小于5MPa时,磨机跳停。
91、YG250/80堆取料刮板臂最大上仰角度为40℃ 最大俯角为-5.5℃。
92、堆料机悬臂与取料机刮板臂之间的相对角度为54度或306度时发出声光报警信号,并自动停机。
93、堆料臂架与料堆顶点距离小于约0.5米时停机。
94、堆料胶带机设有两级跑偏保护装置,1级跑偏发出故障报警信号,2级跑偏发出停机信号。
95、堆料机回转驱动减速装置中采用外设齿轮泵强制润滑,润滑泵供油后,回转驱动电机才能工作。
96、侧式取料机挡轮与钢轨之间的间隙为3-3.5㎜为宜.
97刮板轴承外壳温升不得大于40度,其最高温度不得超过80度,各处不得有泄露.
98、当侧取料机的输送链磨损后伸长程度达2%时,必须全部更换新链条。
99、侧式取料机由刮板取料系统,卷扬提升系统,臂架限位机构,链条润滑系统、机架部分,固定端梁,轨道系统,电缆坑装置,行走限位装置,导料槽,动力电缆卷盘及控制电缆盘等部分组成。
100、混匀堆场侧取控制方式有自动控制,手动控制,机旁控制。

5. 分解炉内的传热方式是什么?

新型干法水泥生产技术是目前世界上最先进的水泥生产技术,近年来,新型干法水泥生产技术日益成熟,并向着系列化、大型化、生态化方向发展。窑尾预分解系统是新型干法水泥生产过程中的核心部分,而分解炉是窑尾预分解系统的核心设备。本文采用实验测定和数值模拟相结合的方法,对山水集团山东水泥厂2000t/d 3#生产线的分解炉进行了传热和流动特性的研究。主要工作如下:
1、结合现场情况,合理布置监测点和采样点,对实际工况中的相关物理量进行了实验测定,并得到所需数据。
2、利用Pro/ENGINEER软件对分解炉建立几何模型,并对分解炉的几何模型进行网格划分。选取几组不同数量的网格,进行网格独立性验证,确定数值模拟的最佳网格数目。
3、使用FLUENT软件,选用标准k-ε模型对分解炉气相流场进行数值模拟,得到了气相流场的速度分布云图、速度矢量图和系统流线图。结果表明,气体整体上呈螺旋上升,炉内多处存在环状涡流和明显的涡旋现象,但是炉内速度分布并不对称。
4、在气相流场模拟的基础上,选择离散相模型,对分解炉气固两相流场进行数值模拟,得到了速度分布云图、生料颗粒轨迹图和煤粉颗粒轨迹图。结果表明,速度分布的整体趋势和气相流场类似,生料颗粒和煤粉颗粒在分解炉内扩散状况良好,几乎充满整个炉体空间,生料颗粒在炉内的最长停留时间达到了11.9s。
5、选用借助概率密度函数(PDF)的非预混燃烧模型,对分解炉煤粉燃烧过程进行数值模拟,得到了煤粉燃烧流场的速度分布、温度分布、各组分浓度分布情况和煤粉颗粒轨迹图。结果表明,热态流场的的速度分布情况和冷态流场趋势大致相同,但整体速度要高于冷态气相流场,同样存在速度分布不对称的现象;温度场的分布存在出口温度太高、下部混合室近壁区温度过高等不合理之处;炉内O2、CO2、CO浓度分布合理。煤粉颗粒分散状况良好。
6、针对数值模拟的结果,对该生产线的分解炉结构提出相应的改进方案,并对改进后的分解炉模型分别进行了气相流场、气固两相流场和煤粉燃烧的数值模拟。与改进前对比,速度场、温度场均得到一定改善。

分解炉内的传热方式是什么?

6. 水泥生产工艺是什么?


7. 水泥生产中熟料出现黄心料有几种情况如何解决?

正常情况下,物料随窑运转方向被带到一定高度而后下落,落时略带黏性,熟料颗粒细小均齐温度过高时,物料被带起来的高度比较高,向下落时黏性较大,翻滚不灵活而颗粒粗大,有时呈饼状下落;烧成温度低时,熟料被带起高度低,顺窑壁滑落,无黏性,物料颗粒细小,严重时呈粉状,这主要是因为温度增高使物料中液相增加,温度降低液相减少。温度增高还会使液相黏度降低,当温度过高时,液相黏度很小,像水一样流动,这种现象,操作上称为“烧流”,会危及窑衬和篦板。
	(3)熟料颗粒大小
	正常的烧成温度,熟料颗粒绝大多数直径在5~15㎜左右,熟料外观致密光滑,并有光泽。温度提高,由于液相量的增加而使熟料颗粒粗,结大块;温度低时,液相量少,熟料颗粒细小,甚至带粉状,表面结构粗糙,疏松,呈棕红色,严重时甚至会产生黄粉,属于生烧的情况。
	(4)熟料立升重和游离CaO的高低
	熟料立升重就是每升5~7㎜粒径的熟料质量。烧成温度高,熟料烧结得致密,因此熟料升重高而游离CaO低;若烧成温度低,则升重低而CaO高;当烧成温度比较稳定时,升重波动范围很小,正常生产时升重的波动范围在±50g之间,各厂的控制指标不一。
窑与分解炉用燃料比例的掌握
	窑、分解炉用燃料比例的掌握应根据以下原则:(1)窑尾及出分解炉的气体温度都不应高于正常值;(2)在通风合理的情况下,窑尾和分解炉出口废气中的氧含量应保持在合适的范围内,应尽量避免一氧化碳的出现;(3)在温度、通风允许的情况下尽量提高分解炉用燃料比例。这些原则易于理解,多数也能得到贯彻,但也有不少人存在一些模糊认识,在遇到问题时不能很好地处理。
	模糊认识之一,窑尾至分解炉间的区域温度偏高、结皮严重总认为是由于分解炉加燃料多引起的,因而操作上总是减少分解炉的燃料,而后增加窑用燃料,结果此区域温度进一步升高,结皮更加严重,窑况进一步恶化。实际上除了窑气、炉气分开的双系列窑外分解窑外,上述情况主要是由于窑用燃料过多引起的。众所周知,分解炉是一种高效交换器,在分解炉内多加燃料,废气温度既不会过高而炉内物料又能获得较高的分解率。但如果把本应加到分解炉的燃料加到窑内,则入窑物料的分解率必然低下,从而增加窑的负担。由于窑内热交换率低,为了保证熟料的正常煅烧,就需在窑内再加燃料,但受燃烧空间和热交换效率的限制,窑尾至分解炉间的区域温度就必然过高。而这一区域又正好是“料稀区”,且物料易在此区部分角落产生循环,有很好的结皮条件,易造成严重结皮。物料在完全分解之前其本身温度不会超过当时的平衡温度(一般850℃左右),所以在分解炉内适当的多加燃料既不会引起上述区域的废气温度过高也不会引起入窑物料温度过高,而只有在炉内物料分散不好、分布不均的情况下才会造成炉内及其出口废气温度高。因此,当窑尾及其上升管道温度高时,不能轻易认为是分解炉燃料加多了,而应认真分析原因,采取正确操作方法。通常只要逐步减少窑用燃料,同时将其减少量的一部分增加到分解炉内,情况就会逐渐好转。
	模糊认识之二,烧成温度低熟料欠烧总认为是窑用燃料少造成的。即使当窑的燃烧能力已到极限时,仍增加窑燃料用量,结果造成窑头温度进一步降低,窑尾系统温度则过高。这一错误的操作方法还会引起窑内还原气氛,造成系统结皮严重,结长厚窑皮甚至结圈。窑内通风及燃烧能力是有一定限度的,在燃烧空气无富余的情况下,增加燃料窑头温度不仅不会提高反而会降低。但有些操作人员一遇到窑头温度低却总是增加窑头燃料,尤其是在喂料量并不多,燃烧空气并不富余的情况下,仍往窑内多加燃料。我认为窑用燃料的增加有一个最简单的原则,即只要窑尾废气中有一氧化碳存在,则调整系统状态使一氧化碳消失之前,不应该增加窑用燃料。所以如遇到窑头温度低的情况,应该首先分析其原因,如燃烧空气不足,应设法增加通风量;如风机已开到极限,则应分析是否下料量大了,是否三次风闸板没调整好,是否窑内结圈,并进行适当的调整和处理。如入窑分解率低,则应增加分解炉燃料而非窑头燃料;如冷却机效率低、二次风温低,则应对冷却机进行处理。总之要具体情况具体分析,而不能一味增加窑头用燃料,结果适得其反。

水泥生产中熟料出现黄心料有几种情况如何解决?

8. 水泥厂常用设备有哪些?

  水泥厂常用设备有
  1、烧成车间的:煤预均化设备、煤磨机、转子称、预热器、回转窑、冷却机等。
  2、水泥车间的:水泥调配、辊压机、水泥磨、包装机等。
  3、生料车间的:石灰石破碎机(锤破、颚破等),石灰石预均化用的堆取料机、生料磨机。
  4、各种计量皮带、皮带机、风机,有循环水系统。
  水泥的生产过程通常概括为二磨一烧,分为三个阶段:石灰质原料、粘土质原料与少量校正原料经破碎后,按一定比例配合、磨细并调配为成分合适、质量均匀的生料,称为生料制备;生料在水泥窑内煅烧至部分熔融所得到的以硅酸钙为主要成分的硅酸盐水泥熟料的过程,称为熟料煅烧;熟料加适量石膏、混合材料或外加剂共同磨细为水泥,并包装或散装出厂,称为水泥粉磨及出厂。
最新文章
热门文章
推荐阅读