BP神经网络预测,预测结果与样本数据的理解。

2024-05-05 23:35

1. BP神经网络预测,预测结果与样本数据的理解。

输入节点数是3,说明输入向量的行数m=3,你给的样本只有1行,是不是不全?输出节点只有一个,说明每3个输入数据对应一个预测的输出数据。
其实样本数量很少,就不需要训练那么多次了,训练了也白训练。你问“这样的预测结果代表着什么?”,你也没说这些数据在现实中是什么,怎么会知道呢。

BP神经网络预测,预测结果与样本数据的理解。

2. bp神经网络预测一组数据

关键在于输入向量的制定:可选择前3年的数据作为输入,输入节点设为3;第4年的数据为输出,输出节点数设为1;隐层节点数设为4左右。这样便形成了样本,用这些样本去训练bp神经网络,将训练好的网络用于预测。
最后是以06、07、08的数据作为输入,去预测09的数据。再滚动迭代下去,直至将2012的数据预测出来。

附件是一个电力负荷的预测实例,按照我上面所说,稍微修改一下样本和节点数即可应用。

3. BP神经网络完成预测

下面是几个仿真实验,用了不同的训练函数:
1.创建BP网络的学习函数,训练函数和性能函数都采用default值,分别为learngdm,trainlm和mse时的逼近结果:
由此可见,进过200次训练后,虽然网络的性能还没有为0,但是输出均方误差已经很小了,MSE=6.72804e-0.06,显示的结果也证明P和T之间非线性映射关系的拟合是非常精确的;
2.建立一个学习函数为learnd,训练函数为traingd,和性能函数为msereg的BP网络,来完成拟合任务:
可见,经过200次训练后,网络的输出误差比较大,而且网络误差的收敛速度非常慢。这是由于训练函数traingd为单纯的梯度下降训练函数,训练速度比较慢,而且容易陷入局部最小的情况。结果显示网络精度确实比较差。
3.将训练函数修改为traingdx,该i函数也是梯度下降法训练函数,但是在训练过程中,他的学习速率是可变的
在200次训练后,以msereg函数评价的网络性能为1.04725,已经不是很大,结果显示P和T之间非线性关系的拟合情况不错,网络的性能不错。

BP神经网络完成预测

4. 如何建立bp神经网络预测 模型

建立BP神经网络预测 模型,可按下列步骤进行:
1、提供原始数据
2、训练数据预测数据提取及归一化
3、BP网络训练
4、BP网络预测
5、结果分析
现用一个实际的例子,来预测2015年和2016年某地区的人口数。
已知2009年——2014年某地区人口数分别为3583、4150、5062、4628、5270、5340万人
执行BP_main程序,得到
[ 2015,  5128.631704710423946380615234375]
[ 2016, 5100.5797325642779469490051269531]
代码及图形如下。

5. 在看了案例二中的BP神经网络训练及预测代码后,我开始不明白BP神经网络究竟能做什么了。。。 程序最后得到

网络的训练过程与使用过程了两码事。
比如BP应用在分类,网络的训练是指的给你一些样本,同时告诉你这些样本属于哪一类,然后代入网络训练,使得这个网络具备一定的分类能力,训练完成以后再拿一个未知类别的数据通过网络进行分类。这里的训练过程就是先伪随机生成权值,然后把样本输入进去算出每一层的输出,并最终算出来预测输出(输出层的输出),这是正向学习过程;最后通过某种训练算法(最基本的是感知器算法)使得代价(预测输出与实际输出的某范数)函数关于权重最小,这个就是反向传播过程。
您所说的那种不需要预先知道样本类别的网络属于无监督类型的网络,比如自组织竞争神经网络。

在看了案例二中的BP神经网络训练及预测代码后,我开始不明白BP神经网络究竟能做什么了。。。 程序最后得到

6. (1)BP算法的学习过程中有两个过程是什么?(2)写出BP神经网络的数学模型,并以20

bp(back propagation)网络是1986年由rumelhart和mccelland为首的科学家小组提出,是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一。bp网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程。它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小。bp神经网络模型拓扑结构包括输入层(input)、隐层(hide layer)和输出层(output layer)。
人工神经网络就是模拟人思维的第二种方式。这是一个非线性动力学系统,其特色在于信息的分布式存储和并行协同处理。虽然单个神经元的结构极其简单,功能有限,但大量神经元构成的网络系统所能实现的行为却是极其丰富多彩的。

人工神经网络首先要以一定的学习准则进行学习,然后才能工作。现以人工神经网络对手写“a”、“b”两个字母的识别为例进行说明,规定当“a”输入网络时,应该输出“1”,而当输入为“b”时,输出为“0”。

所以网络学习的准则应该是:如果网络作出错误的的判决,则通过网络的学习,应使得网络减少下次犯同样错误的可能性。首先,给网络的各连接权值赋予(0,1)区间内的随机值,将“a”所对应的图象模式输入给网络,网络将输入模式加权求和、与门限比较、再进行非线性运算,得到网络的输出。在此情况下,网络输出为“1”和“0”的概率各为50%,也就是说是完全随机的。这时如果输出为“1”(结果正确),则使连接权值增大,以便使网络再次遇到“a”模式输入时,仍然能作出正确的判断。

如果输出为“0”(即结果错误),则把网络连接权值朝着减小综合输入加权值的方向调整,其目的在于使网络下次再遇到“a”模式输入时,减小犯同样错误的可能性。如此操作调整,当给网络轮番输入若干个手写字母“a”、“b”后,经过网络按以上学习方法进行若干次学习后,网络判断的正确率将大大提高。这说明网络对这两个模式的学习已经获得了成功,它已将这两个模式分布地记忆在网络的各个连接权值上。当网络再次遇到其中任何一个模式时,能够作出迅速、准确的判断和识别。一般说来,网络中所含的神经元个数越多,则它能记忆、识别的模式也就越多。

如图所示拓扑结构的单隐层前馈网络,一般称为三层前馈网或三层感知器,即:输入层、中间层(也称隐层)和输出层。它的特点是:各层神经元仅与相邻层神经元之间相互全连接,同层内神经元之间无连接,各层神经元之间无反馈连接,构成具有层次结构的前馈型神经网络系统。单计算层前馈神经网络只能求解线性可分问题,能够求解非线性问题的网络必须是具有隐层的多层神经网络。
神经网络的研究内容相当广泛,反映了多学科交叉技术领域的特点。主要的研究工作集中在以下几个方面:

(1)生物原型研究。从生理学、心理学、解剖学、脑科学、病理学等生物科学方面研究神经细胞、神经网络、神经系统的生物原型结构及其功能机理。

(2)建立理论模型。根据生物原型的研究,建立神经元、神经网络的理论模型。其中包括概念模型、知识模型、物理化学模型、数学模型等。

(3)网络模型与算法研究。在理论模型研究的基础上构作具体的神经网络模型,以实现计算机模拟或准备制作硬件,包括网络学习算法的研究。这方面的工作也称为技术模型研究。

(4)人工神经网络应用系统。在网络模型与算法研究的基础上,利用人工神经网络组成实际的应用系统,例如,完成某种信号处理或模式识别的功能、构作专家系统、制成机器人等等。

纵观当代新兴科学技术的发展历史,人类在征服宇宙空间、基本粒子,生命起源等科学技术领域的进程中历经了崎岖不平的道路。我们也会看到,探索人脑功能和神经网络的研究将伴随着重重困难的克服而日新月异。
神经网络可以用作分类、聚类、预测等。神经网络需要有一定量的历史数据,通过历史数据的训练,网络可以学习到数据中隐含的知识。在你的问题中,首先要找到某些问题的一些特征,以及对应的评价数据,用这些数据来训练神经网络。

虽然bp网络得到了广泛的应用,但自身也存在一些缺陷和不足,主要包括以下几个方面的问题。

首先,由于学习速率是固定的,因此网络的收敛速度慢,需要较长的训练时间。对于一些复杂问题,bp算法需要的训练时间可能非常长,这主要是由于学习速率太小造成的,可采用变化的学习速率或自适应的学习速率加以改进。

其次,bp算法可以使权值收敛到某个值,但并不保证其为误差平面的全局最小值,这是因为采用梯度下降法可能产生一个局部最小值。对于这个问题,可以采用附加动量法来解决。

再次,网络隐含层的层数和单元数的选择尚无理论上的指导,一般是根据经验或者通过反复实验确定。因此,网络往往存在很大的冗余性,在一定程度上也增加了网络学习的负担。

最后,网络的学习和记忆具有不稳定性。也就是说,如果增加了学习样本,训练好的网络就需要从头开始训练,对于以前的权值和阈值是没有记忆的。但是可以将预测、分类或聚类做的比较好的权值保存。

7. 对如下BP神经网络,写出它的计算公式(含学习公式),并对其初始权值以及样本x1=1,x

 


对如下BP神经网络,写出它的计算公式(含学习公式),并对其初始权值以及样本x1=1,x

8. 预测 一般有哪些方法 神经网络

时间序列预测只要能转化为训练样本,即可使用神经网络进行训练。目前常用的几类人工神经网络,如BP神经网络、Elman神经网络、RBF神经网络、GRNN神经网络、小波神经网络以及各类组合神经网络,都是可以应用在时间序列预测中的。
预测效果较好的一般有:1、GRNN神经网络、RBF神经网络。局部逼近网络由于只需调整局部权值,因此训练速度较快,拟合精度也较高。2、Elman神经网络。由于Elman神经网络的承接层的延时算子,使得网络可以记忆历史信息,这正好与时间序列预测的原理相同,极其适于应用于时间序列预测。