斐那波契数列

2024-05-07 03:01

1. 斐那波契数列

斐波那契数列指的是这样一个数列:1、1、2、3、5、8、13、21、……
这个数列从第三项开始,每一项都等于前两项之和。
随着数列项数的增加,前一项与后一项之比越来越逼近黄金分割的数值0.6180339887……

起源
1202年数学家菲波那契提出了一个著名的兔子问题:假定一对兔子从第三个月起逐月生一对一雌一雄的小兔,每对小兔在两个月后也逐月生一对一雌一雄的小兔,…。问一年之后兔房里共有多少对兔子?   菲波那契是这样来考虑的:设第n个月后兔房里的兔子数为an对,这an应由以下两部分组成:一部分是第n﹣1个月时已经在兔房里的兔子,它们有an﹣1对;另一部分是第n个月中新出世的,而这部分应有第n﹣2个月时兔房里的兔子所生,有a n﹣2对。   ∴有递推关系式(An+1)=(An)+(An-1)(n∈N且n>2),且易知A1=A2 =1。由这个递推关系式可以得到一年后的兔子对数A12=141。这也是递推方法应用的一个最著名的例子。   按照如上的递推,菲波拉契数列前几项如下:   1 1 2 3 5 8 13 21……   从数学上,该数列也是可以推导出通项公式的,其通项公式推导如下:   (An+1)=(An)+(An-1),将An项分解为(((1+√5)/2)+((1-√5)/2))(An),然后移项,得到下式:   (An+1)-((1+√5)/2)(An)=((1-√5)/2)(An)+(An-1)   即(An+1)-((1+√5)/2)(An)=((1-√5)/2)((An)-((1+√5)/2)(An-1))   即新数列{(An)+((1+√5)/2)(An-1)}是以((1-√5)/2)为首项,((1-√5)/2)为公比的等比数列   即(An)-((1+√5)/2)(An-1)=((1-√5)/2)^n   即(An)=((1+√5)/2)(An-1)+((1-√5)/2)^n   两边同时除以((1+√5)/2)^n,得又一新数列(Bn)=(Bn-1)+(((1-√5)/2)^n)/(((1+√5)/2)^(n+1))   其中,(Bn)=An/(((1+√5)/2)^n)   依次递归,得到(Bn)=((1+√5)/2)^(-1)+2*(((1-√5)/(1+√5)^2)+(((1-√5)^2)/(1+√5)^3)+……+(((1-√5)^(n-1))/(1+√5)^n))   将Bn带入,化简,得到An=((((1+√5)/2)^n)-(((1-√5)/2)^n))/(√5)   (注√表示根号)   该数列有以下几个性质:   1.随着数列项数的增加,前一项与后一项之比越逼近黄金分割比   2.从第二项开始,每个奇数项的平方都比前后两项之积多1,每个偶数项的平方都比前后两项之积少1   3.如果任意挑两个数为起始,按照菲波拉契数列的形势递推下去,随着数列的发展,前后两项之比也越来越逼近黄金分割比,且某一项的平方与前后两项之积的差值也交替相差某个值(菲波拉契数列的推广)。

斐那波契数列

2. 斐波那契数列的相关数学

 有一段楼梯有10级台阶,规定每一步只能跨一级或两级,要登上第10级台阶有几种不同的走法?这就是一个斐波那契数列:登上第一级台阶有一种登法;登上两级台阶,有两种登法;登上三级台阶,有三种登法;登上四级台阶,有五种登法……1,2,3,5,8,13……所以,登上十级,有89种走法。类似的,一枚均匀的硬币掷10次,问不连续出现正面的可能情形有多少种?答案是(1/√5)*{[(1+√5)/2]^(10+2) - [(1-√5)/2]^(10+2)}=144种。求递推数列a⑴=1,a(n+1)=1+1/a(n)的通项公式由数学归纳法可以得到:a(n)=F(n+1)/F(n),将斐波那契数列的通项式代入,化简就得结果。 斐波那契数列又因数学家列昂纳多·斐波那契以兔子繁殖为例子而引入,故又称为“兔子数列”。一般而言,兔子在出生两个月后,就有繁殖能力,一对兔子每个月能生出一对小兔子来。如果所有兔子都不死,那么一年以后可以繁殖多少对兔子?我们不妨拿新出生的一对小兔子分析一下:第一个月小兔子没有繁殖能力,所以还是一对两个月后,生下一对小兔对数共有两对三个月以后,老兔子又生下一对,因为小兔子还没有繁殖能力,所以一共是三对------依次类推可以列出下表:  经过月数  0  1  2  3  4  5  6  7  8  9  10  11  12  幼仔对数  1  0  1  1  2  3  5  8  13  21  34  55  89  成兔对数  0  1  1  2  3  5  8  13  21  34  55  89  144  总体对数  1  1  2  3  5  8  13  21  34  55  89  144  233  幼仔对数=前月成兔对数成兔对数=前月成兔对数+前月幼仔对数总体对数=本月成兔对数+本月幼仔对数可以看出幼仔对数、成兔对数、总体对数都构成了一个数列。这个数列有关十分明显的特点,那是:前面相邻两项之和,构成了后一项。这个数列是意大利中世纪数学家斐波那契在中提出的,这个级数的通项公式,除了具有a(n+2)=an+a(n+1)的性质外,还可以证明通项公式为:an=(1/√5)*{[(1+√5)/2]^n-[(1-√5)/2]^n}(n=1,2,3.....) 对于斐波那契数列1、1、2、3、5、8、13、……。有如下定义F(n)=F(n-1)+F(n-2)F(1)=1F(2)=1对于以下矩阵乘法F(n+1) = 11 F(n)F(n) 10 F(n-1)它的运算就是右边的矩阵 11乘以矩阵 F(n) 得到:10 F(n-1)F(n+1)=F(n)+F(n-1)F(n)=F(n)可见该矩阵的乘法完全符合斐波那契数列的定义设矩阵A=1 1 迭代n次可以得到:F(n+1) =A^(n) * F(1)= A^(n)*11 0 F(n) F(0) 0这就是斐波那契数列的矩阵乘法定义。另矩阵乘法的一个运算法则A^n(n为偶数) = A^(n/2)* A^(n/2),这样我们通过二分的思想,可以实现对数复杂度的矩阵相乘。因此可以用递归的方法求得答案。数列值的另一种求法:F(n) = [ (( sqrt ( 5 ) + 1 ) / 2) ^ n ]其中[ x ]表示取距离 x 最近的整数。

3. 交易的数学之美:斐波那契数列

斐波那契是一位意大利数学家,他提出了斐波那契数列。它们非常受金融市场技术分析交易员的欢迎,因为它们可以应用于任何时间框架。斐波那契数列,又称黄金分割数列,是一组神奇的数列:1、1、2、3、5、8、13、21、34、55、89、144、233……
  
 在这个数列中最主要的几个特点:
  
 1. 这个数列从第3项开始,每一项都等于前两项之和,数学表达为F(n)=F(n-1)+F(n-2)
  
 2.当n趋向于无穷大时,前一项与后一项的比值越来越逼近黄金分割0.618,因此,61.8%就成为了斐波那契的关键比率,也被称作“黄金比例”。
  
 3.通过对该数列的探索可以推导出两组重要的数列——0.191、0.382、0.5、0.618、0.809;1、1.382、1.5、1.618、2、2.382、2.618。这两组数列中最为重要的是 0.382、0.5、0.618、1、1.618 五个数字,它们在黄金外汇分析中使用十分广泛而且效果极佳。
                                          
 斐波那契数会经常出现在我们的生活中——比如松果、凤梨、树叶的排列、某些花朵的花瓣数(典型的有向日葵花瓣),蜂巢,蜻蜓翅膀,超越数e(可以推出更多),黄金矩形、黄金分割、等角螺线,十二平均律等,非常有意思的现象,同样,它在股市、黄金、期货等等交易市场的交易趋势中也有很好的借鉴和指导作用。
  
 
  
                                          
 
  
  
 上一篇文章中,我们介绍了波浪理论,那波浪理论中斐波那契数列又是具体如何体现的呢?
  
 
  
                                          
 比率一:如果推动浪中的一个子浪成为延伸浪,其它两个推动浪运行的幅度和时间将会倾向于一致。这表明在多数情况下,在第一、第三、第五三个推动浪中,一般会有一个推动浪成为延伸浪,而其它两个推动浪运行幅度和时间基本接近。通常情况下,第三浪出现延伸的概率很大,而第一和第五浪长度和运行时间基本差不多。而某些情况下,第五浪出现延伸的也是有可能的,特别是在期货市场上,第一浪出现延伸的概率很小,主要发生在倾斜三角形中。延伸浪的长度与其它两个推动浪基本维持黄金比率,如1.618、2.618等,当然这种比率也并非是固定的。
  
 比率二:第五浪与第一浪底至第三浪顶距离的比率。通常清况下,两者之间保待黄金比率,如0.618等。这一比率主要用来预测第五浪的最终目标位。
  
 比率三:C浪与A浪之间的比率关系。两者之间的比率关系基本上维持在1或1.618。在A浪运行完毕后,可以通过八浪运行的幅度预测C浪的目标位。
  
 比率四:在对称三角形中,相临两个波浪之间的比率基本维持在0.618这个黄金分割率、通过了解前一个浪的长度可以顶测后一个浪的长度(常见的比率1.618、1.382)。
  
 0.382:第四浪常见的回吐比率;部分第二浪的回吐比率;也可出现在B浪的回吐中(ABC浪以之字运行)。
  
 0.618:大部分第二浪的调整幅度;B浪的调整比率(ABC浪以之字运行);第五浪的预期目标。
  
 0.5:B浪的调整幅度(ABC以之字运行)。
  
 0.236:较少见的第二浪或第四浪的回吐比率,此时为超强势调整。
  
 1.382、1.236:在不规则的调整形态中,可以利用B浪与A浪的关系预测B浪的目标位。
  
 0.618:第三浪与第一浪的关系;C浪与A浪的比率关系。
  
  从调整的角度分析,0.382附近的调整属于强势调整,0.5位置附近的调整属于中势调整,0.618位置附近属于弱市调整,而一旦调整失守0.618的位置,则调整很可能接近100%。

交易的数学之美:斐波那契数列

4. 斐波那契数列

斐波纳契数列(Fibonacci Sequence),又称黄金分割数列,指的是这样一个数列:1、1、2、3、5、8、13、21、……在数学上,斐波纳契数列以如下被以递归的方法定义:F0=0,F1=1,Fn=F(n-1)+F(n-2)(n>=2,n∈N*)在现代物理、准晶体结构、化学等领域,斐波纳契数列都有直接的应用,为此,美国数学会从1960年代起出版了《斐波纳契数列》季刊,专门刊载这方面的研究成果。

http://baike.baidu.com/view/816.html?wtp=tt

5. 斐波那契数列

斐波那契数列的通项公式是很眼花。。。不过重要的不是它的通项公式,是怎样解得它的通项公式
对于递推公式为ax(n+2)=bx(n+1)+cxn来说(这里的数列是x,n+2、n+1和n都是下标),令x(n+2)=
k^2,x(n+1)=k,x=1,解一元二次方程ak^2-bk-c=0,得到的k1和k2就是通项公式的重要组成部分,一般来说这种数列的通项公式是k1^(某个用n表示的数)+k2^(某个用n表示的数)
注:x^y是x的y次方 
到了高中就讲斐波那契数列了

斐波那契数列

6. 斐波那契数列的介绍

斐波那契数列(Fibonacci sequence),又称黄金分割数列、因数学家列昂纳多·斐波那契(Leonardoda Fibonacci1)以兔子繁殖为例子而引入,故又称为“兔子数列”,指的是这样一个数列:0、1、1、2、3、5、8、13、21、34、……在数学上,斐波纳契数列以如下被以递归的方法定义:F(0)=0,F(1)=1,F(n)=F(n-1)+F(n-2)(n≥2,n∈N*)在现代物理、准晶体结构、化学等领域,斐波纳契数列都有直接的应用,为此,美国数学会从1963起出版了以《斐波纳契数列季刊》为名的一份数学杂志,用于专门刊载这方面的研究成果。

7. 关于斐波那契数列

斐波那契数列指的是这样一个数列:1、1、2、3、5、8、13、21、……
  这个数列从第三项开始,每一项都等于前两项之和。它的通项公式为:(1/√5)*{[(1+√5)/2]^n
-
[(1-√5)/2]^n}(又叫“比内公式”,是用无理数表示有理数的一个范例。)(√5表示根号5)

关于斐波那契数列

8. 斐波那契数列

罗博深小学数学思维课《神奇数列》
链接:https://pan.baidu.com/s/1znmI8mJTas01m1m03zCRfQ
?pwd=1234 
提取码:1234
资源目录:03 罗博深小学数学思维课《神奇数列》课时9:帕斯卡三角的神奇巧合.mp4课时8:Choose a team 选择一支队伍/排列组合与帕斯卡三角.mp4课时7:Pascal Triangle  初识帕斯卡三角.mp4课时6:1x1+1x1+2x2+3x3+5x5+8x8 斐波那契螺旋.mp4课时5:1+1+2+3+5+8+13+21+34+55 斐波那契数列之和.mp4课时4:斐波那契蜜蜂(从简单寻找规律).mp4课时3:5x5+8x8 连续斐波那契数的平方求和.mp4课时2:最美的分数(初识斐波那契数列).mp4课时1:课程介绍.mp4课时16:黄金比例长方形与斐波那契螺旋.mp4课时15:神奇的√5.mp4课时14:帕斯卡三角的倾斜数组和与斐波那契数.mp4课时13:帕斯卡三角斜线数组和与两种证明.mp4课时12:排列组合,斐波那契蜂巢与帕斯卡三角.mp4

最新文章
热门文章
推荐阅读