地质历史时期的冰期

2024-05-17 04:05

1. 地质历史时期的冰期

在距今3Ga以来的地质历史中,地球上发育了多个冰期和间冰期(图9-4)。其中,太古宙的冰川事件沉积记录稀缺,而新元古代以来的沉积记录则为各期冰川事件的研究提供了很好的资料。

图9-4 地球历史中的冰期及其与超大陆汇聚与解体阶段的关系示意图

(据Eyles,2008)
1.太古宙冰期(距今约4~2.5Ga)
地质记录的冰川作用发生在距今2.9~2.8Ga左右,且局限于非洲南部。由于冰川作用的沉积地质记录很少,现有证据可能仅代表了短暂的局部冰川作用,而难以严格地界定一个冰期。由于资料的严重缺乏,针对太古宙的气候模拟甚至得出了完全相反的结论。一种认为一个“热温室”支配了太古宙和元古宙大部分时间,并阻碍了大范围冰川作用的发生(Kasting,1987,Kramers,2002)。而另一种观点认为,太古宙比现代更冷,因为当时年轻的太阳只释放出比出现在低25%~30%的热量。然而,尽管关于地球早期气候的性质还存在争论,但地球冰川地质记录开始于距今3Ga之后这一事实与毫无争议的微生物证据和生成氧气的光合作用的开始时间高度一致(Noffke et al.,2006;Ono et al.,2006)。南非的Mozaan群记录了太古宙(~2.9Ga)的冰川作用(Young et al.,1998),它形成于Kaapvaal克拉通南部被动大陆边缘,主要由厚5000 m的海相沉积组成,厚达80多米的杂岩位于靠近顶部的Odwaleni组中。
2.古元古代冰期(距今约2.4Ga)
加拿大安大略古元古代休伦统(Huronian)超群(劳伦西亚大陆南部省的一部分)记录了距今约2.4Ga的冰川作用,这是最为大家所熟知的最早冰期。在南非(Kalahari克拉通)和北美的波罗的地盾(Karelia克拉通的芬兰段)也有相关地层记录,但体积略小,出露程度也稍差。其他冰海成因杂砾岩(Makganyene组)出现在南非Griqualand West盆地约2400Ma的Transvaal超群中。Kirschvink et al.(2000)和Melezhik et al.(2005)认为休伦统及其他沉积地层记录了发生在低至中纬度的一次或多次“全球冰川作用”。以地球动力学角度来说,古元古代冰川作用发生在劳伦西亚大陆以波罗的古陆中分离的超大陆(Kenorland)早期裂陷阶段,时间约2.1Ga(图9-4)。休伦统厚度至少12km,可分四个构造地层层序,其中以位于Cobalt群底部的Gowganda组(厚达1.7km)最为著名。据Kopp et al.(2005)和Kasting&Howard(2006)推断,太古宙和古元古代的冰川作用是由大气中氧浓度的升高抵消了富甲烷大气的温室升温效应而引发的。
3.新元古代冰期(距今0·75Ga~545Ma)
新元古代沉积岩的地层学、同位素年代学和地球化学研究指示,新元古代时期发育至少四次成规模的冰川事件,由老到新分别称为:Kaigas冰期,Sturtian冰期,Marinoan冰期和Gaskiers冰期(图9-4,图9-5)。它们是根据主要地层所在地命名的,其中Kaigas冰期是根据Kalahari克拉通地区Sturtian冰期之下的冰期沉积地层命名的,而Sturtian和Marinoan冰期是根据澳大利亚地区的冰期沉积地层命名的,Gaskiers冰期主要发育于纽芬兰地区。由于新元古代冰成地层的时代多是采用间接方法推断而来,因此对每个冰期的具体年龄也有较大争议。就现在的同位素年龄数据和地质地球化学记录来看,新元古代Marinoan冰期和Sturtian冰期的年龄时限基本上可以达成共识,即分别为651~635Ma和718~660Ma。而Kaigas冰期和Gaskiers冰期的期次和时限的分歧较大,初步推测分别为757~741Ma和583.7~582.1Ma(赵AA,2011)。

图9-5 罗迪尼亚大陆解体与新元古代冰期示意图(超大陆的精确古纬度位置未知且争议很大)

(据Eyles,2008)
A—阿拉伯半岛;Aus—澳大利亚;EAnt—东南极洲;Gr/Scan—格陵兰/斯堪的纳维亚;Laurentia—劳伦;In—印度;NCB—华北板块;NWA—西北非洲;SCB—华南板块;T—塔里木;Congo—刚果;Amazonia—亚马孙
(1)Kaigas冰期
Kaigas冰期原来被认为属于Sturtian冰期早期发育的冰川事件(Frimmel et al.,1996;Borg et al.,2003)。现在人们发现,澳大利亚及劳伦西亚大陆所覆盖地区的Sturtian冰期及其相当地层的年龄比原来想象的年龄要老(Kendall et al.,2006),而且南非Kalahari克拉通上的Kaigas冰期沉积没有立即被Sturtian冰期沉积所覆盖(Frimmel et al.,1996),由此确定Sturtian冰期之前应该还存在一个冰期。
赞比亚西北部Kundelungu群广泛发育块状的冰期沉积物,厚度超过100m(Key et al.,2001)。沉积物中发育厚层的粒序层理,由砾岩逐渐过渡到粉砂岩。碎屑颗粒分选差,粒径变化大,形状也不均一,杂乱堆积。碎屑成分主要包括石英脉、石英岩(具有不同的Fe含量)、燧石、花岗岩、花岗片麻岩、糜棱岩、镁铁质火山岩、辉绿岩,以及无法识别原来岩性的风化程度较高、含铁质的碎屑。该层冰碛岩之下Mwashia群火山熔岩中锆石的U-Pb年龄是765±5Ma和763±6Ma,而冰碛岩之上Katanga超群中与冰期沉积物紧密接触的变质火山岩中锆石的U-Pb年龄是735±5Ma,这指示了Kundelungu冰期应该发生在距今约765~735Ma之间(Key et al.,2001)。
纳米比亚北部地区穿透Kaigas冰碛岩下伏地层中正长岩的锆石U-Pb年龄是757±1Ma,而其西南部Gariep造山带地区PortNolloth Group中较老的冰碛岩之下长英质火山岩中锆石的U-Pb年龄为751.9±5.5Ma,这指示了该地区Kaigas冰期的最大年龄(Hoffman et al.,1994;Borg et al.,2003)。Kaigas冰碛岩之上Rosh Pinah变质流纹岩中锆石的U-Pb年龄是741±6Ma,代表了Kaigas冰期的最小年龄(Frimmel et al.,1996)。所以Kaigas冰期的年龄可能为757~741Ma。
(2)Sturtian冰期
Sturtian冰期的分布范围可能较广,但是典型的Sturtian冰期沉积仅发育在纳米比亚北部、澳大利亚南部和加拿大西北部等地区。其他地区,如纳米比亚南部、中国南部、阿巴拉契亚山东部、阿曼和蒙古等地区也可能有Sturtian冰期沉积岩。
Sturtian冰期的期次和时限现在仍存在较大争议(Hoffman&Li,2009;Xu et al.,2009)。南非纳米比亚地区Chuos组冰碛岩之下Naawpoort火山岩锆石的U-Pb年龄为746±2Ma(Hoffman et al.,1996),但是该火山岩距冰碛岩700m,因此不能作为Sturtian冰期的最大年龄。加拿大西北部Rapitan群中冰期沉积物之下Mount Berg组的花岗质碎屑岩中,锆石的U-Pb年龄是755±18Ma(Ross&Villeneuve,1997),指示了Sturtian冰期的下限年龄小于755±18Ma;而下部岩墙中锆石的U-Pb年龄是716.5±0.2Ma(Macdonald et al.,2010)。加拿大西北部MountHarper群上部冰碛岩之下D段火山杂岩中锆石的U-Pb年龄是717.43±0.14Ma(Macdonald et al,2010)。由于该段火山杂岩之下没有再出现冰期沉积,因此717.43±0.14Ma这个年龄应该是低纬度Sturtian冰期的最大年龄。
美国Pocatello南部Porteuf Narrow地区Pocatello组Scout Mountain段的上冰碛岩中斑状流纹岩的岩浆锆石U-Pb年龄是717±4Ma(Fanning&Link,2004)。加拿大西北部的Mount Harper上部冰碛岩内部含有角砾状凝灰岩,其锆石的U-Pb年龄是716.47±0.24Ma(Macdonald et al.,2010)。阿曼北部Sultanate地区Huqf超群中Ghubrah冰碛岩夹凝灰质杂砂岩,其中所含的碎屑锆石的U-Pb年龄是723+16/-10Ma(Braiser et al.,2000),同一层位的锆石后来获得的更精确U-Pb年龄是711.5±0.3Ma和711.8±1.6Ma(Allen et al.,2002;Bowring et al.,2007)。劳伦西亚大陆可与Yukon的Hyland群进行对比的长英质火山碎屑岩中,锆石的U-Pb年龄是688.6+9.5/-6.2Ma(Ferri et al.,1999)。如果这些地区的冰碛岩沉积都属于Sturtian冰期,则冰碛岩中不一致的火山灰或熔岩年龄,说明不同地区Sturtian冰期开始和结束的时间可能存在差异性。不过,也可能是Sturtian冰期本身就包含了若干个小冰期组成的旋回沉积,这些小旋回开始和结束的时间存在差异。
美国爱达荷州中部Edwardsburg组杂砾岩之下、基底(Big Creek群)之上流纹岩中锆石的U-Pb年龄是699±3 Ma(Evans et al.,1997),爱达荷州南部Pocatello距Scout Mountain段冰期沉积杂砾岩顶部帽碳酸盐岩之上20m,但第二层似帽碳酸盐岩之下的再沉积凝灰岩层中锆石的U-Pb年龄667±5Ma(Fanning&Link,2004),这应该是Sturtian冰期结束的最晚年龄,即670Ma左右可能是这次冰期的上限年龄。
(3)Marinoan冰期
Marinoan冰期分布范围很广,几乎在全球都有分布(Kennedy et al.,1998)。冰期沉积的厚度分布不均,在某些地区甚至呈多层分布,而有的地区缺失。
中国华南地区发育完整的Marinoan冰期沉积,一般称之为“南沱组”,在皖南地区也称为“雷公坞组”。华南地区南沱组冰期沉积物排列杂乱,无定向分选,大小混杂、形态多样。磨圆极差,多数未经磨圆;而且富黏土杂基,多为杂基支撑。砾石常见磨光面、“丁”字痕、压坑。尤其以略具定向的“丁”字形擦痕为最典型。沉积物中的细粒部分在压缩流动过程中发生脆性变形。沉积物中长石含量较高,为20%~50%,而且表面干净、新鲜、棱角状,未受风化、蚀变、磨蚀,这也是冰川发育区因气候寒冷、干旱,少化学风化和磨蚀,并快速堆积埋藏的结果。
中国湖北的吉首地区紧邻南沱组冰期沉积的湘锰组(长安组)凝灰岩层中锆石的年龄为654.5±3.8Ma(Zhang et al.,2008),这与贵州东部地区铁丝坳和南沱组冰期沉积之间的大塘坡组夹的凝灰岩层的年龄663±4Ma(Zhou et al.,2004)是一致的,它们限定了Marinoan冰期的最大年龄。
加拿大西部劳伦西亚地区Windermere超群中MountVreelan组冰期地层被Old FortPoint(OFP)组黑色页岩覆盖,黑色页岩的全岩Re-Os年龄是607.8±4.7Ma(Kendall et al.,2004)。加拿大东北部纽芬兰的Avalon半岛和劳伦西亚的Scotland地区Marinaon冰期之后的火山岩中,锆石的年龄分别为606±3Ma和601±4Ma(Dempster et al.,2002)。澳大利亚中部Amadeus盆地Aralka组中富含有机质的黑色页岩全岩的Re-Os年龄是592±14Ma(Schaefer&Burgess,2003),而Kendall et al.(2006)认为这个年龄是不正确的,他们重新测得的年龄是657.2±5.4Ma。由于Aralka组之上的Olympic组被认为属于Marinoan冰期沉积(Bowring et al.,2003),所以Marinoan冰期应该晚于657.2±5.4Ma。纳米比亚的Ghaub组为Marinoan海相冰期沉积的产物,其顶部的薄层长英质火山灰接近杂砾岩的顶部,其中的锆石U-Pb年龄为635.5±1.2Ma(Hoffmann et al.,2004),直接限制了Marinoan冰期的结束时间。
(4)Gaskiers冰期
Gaskiers冰期的分布范围比Sturtian和Marinoan冰期小得多,但这次冰期对全球气候的变化和生物的演化也有很重要的影响。典型的Gaskiers冰期沉积一般发育在纽芬兰东部、阿巴拉契亚Viginian地区、挪威北部地区。纽芬兰东部Gaskiers冰期沉积地层的年龄为580Ma(Bowring et al.,2003),毫无疑问,代表了Marinoan冰期后的沉积。
美国马萨诸塞州东部波士顿盆地Squantum段冰碛岩所含的熔结凝灰岩中锆石的U-Pb年龄是595.2±2Ma(Thomoson&Bowring,2000)。澳大利亚塔斯马尼亚西北部Corles Hill冰期沉积物之下Togari群流纹英安岩中锆石的U-Pb年龄是582.1±4.1Ma,而澳大利亚国王岛(King Island)的Grassy群中一个侵入Elatina组冰碛岩(Cottons角砾岩)、帽碳酸盐岩和后期页岩的Grassy群岩墙,其中的锆石U-Pb年龄为574.7±3.0Ma(Calver et al.,2004),Cottons角砾岩在层位上与Elatina冰期沉积层相当,而Croles Hill冰期沉积与Cottons角砾岩相当(Calver,2000)。因此,澳大利亚地区582.1±4.1Ma和574.7±3.0Ma可以作为Gaskiers冰期的上下限年龄,比波士顿盆地内的冰期沉积时间稍晚。加拿大的纽芬兰Avalon半岛中东部Gaskiers组杂砾岩内部和上部凝灰岩层中的锆石U-Pb年龄为582.1±0.5和583.7±0.5Ma(Bowring et al.,2003;Hoffman&Li,2009),这两个年龄直接限定了Gaskiers冰期的起止年龄。这说明了Gaskier冰期的持续时间最长不超过2.6Ma。Hoffman&Li(2009)认为在如此短的时间内,大气中的CO2不可能积累到使全球冰川溶融的程度。而且现在也没有证据证明其他古大陆上也发育Gaskiers同冰期沉积。所以,Gaskiers冰期应该属于纽芬兰地区的区域性冰川,其上下限年龄为582.1和583.7Ma。这次冰川属于大陆型冰川,分布范围十分局限,与Kaigas冰期类似,可能只是山岳冰川或形成于小盆地中的冰盖,并不能代表全球性的冰川事件。
4.晚古生代Saharan冰期(距今约440Ma)
罗迪尼亚大陆解体后,北非克拉通在南极圈内向北侧移。北非虽然处于高纬度地区,但直到奥陶纪末,才有冰川地质证录出现。这种明显缺乏长期冰盖存在的事实,可能仅仅反映了老的冰成地层已经被剥蚀掉或者本来就没有保存下来。实际上,有人提出北非存在一个长达10Ma的冰川事件,其开始时间远早于奥陶纪并一直延续到志留纪(Grahn&Caputo,1992;Caputo,1998;Saltzman&Young,2005)。有人认为非洲南部冰川是单独存在的(Young et al.,2004),但也有人认为它是连续的“泛非冰原(Pan-African IceSheet)”的一部分,一直延伸超过南纬60°。其他晚古生代冰川位于冈瓦纳大陆的原安第斯(ProtoAndean)活动边缘,即现今的秘鲁-玻利维亚地区(图9-6)。
晚奥陶世冰川沉积厚度较薄(<200m),以粗粒为主,明显不整合于水道沉积之上。Beuf et al.(1971),Trompette(1973)和Vaslet(1990)在其中识别出了代表大陆冰川和寒冷气候的地貌,如蛇形丘、冰碛石、冰丘、冰缘多边形构造、冰核丘以及冰下和冰前融水形成的水道等。Moreau et al.(2005)根据岩石中发育的多种层面构造,绘制了记录冰川以冈瓦纳大陆内部高地向边缘流动的流线图。

图9-6 早奥陶世和晚奥陶世Saharan冰期的古地理

(据Eyles,2008)
5.晚泥盆世冰期(距今约374Ma)
晚奥陶世Saharan冰期之后的1Ma间,冈瓦纳大陆仍处于极地高纬度位置,但却没有冰川发育,直到约距今350Ma的晚古生代冈瓦纳冰期才开始。
沿南非板块活动边缘发生的冷却隆起事件导致了短暂的晚泥盆世冰期,冰川覆盖了现今玻利维亚和巴西部分地区(Caputo,1998;Isaacson et al.,1999)。Kaiser et al.(2006)认为晚泥盆世冰川体积与第四纪冰川体积类似。穿越弗拉斯阶-法门阶界线的3~4℃的冷却事件,与板块碰撞过程中发生的风化作用所引起的CO2损耗有关。这次碰撞造成了“显生宙最大的生物圈危机之一”(Averbuch et al.,2005)。古生物学家认为远离陆棚的水深变化与泥盆纪冰川的生长和消融有关,但他们没有考虑其他因素对水深变化的影响。
6.晚古生代冈瓦纳冰期(距今约350~250Ma)

图9-7 石炭-二叠纪冈瓦纳冰期冰的生长阶段

(据Eyles,2008)
距今350Ma后,大型冰原在印度、南美、非洲南部、澳大利亚和南极洲形成(Crowell,1999;Veevers,2004)(图9-7)。冰川的形成与生长受南半球高古纬度地区的广泛抬升的直接响应,这些抬升由冈瓦纳大陆与劳亚大陆碰撞所引起,时间上处于中石炭世华力西至晚石炭阿莱干尼(Alleghenian)期间。与冰川有关的海相沉积岩中油气的存在,促使人们对冈瓦纳冰期沉积物进行深入研究,以而获得了大量钻井、地震等地下资料。总体上说,冰下冰碛岩、冰川侵蚀以及冰床表面擦痕等晚古生代大陆冰川作用证据在局部地区是非常明显的(如非洲南部),但以整个冈瓦纳大陆来看,这些冰川作用的地质证据却很稀少。在澳大利亚南部的库伯(Cooper)内克拉通盆地发育有很厚的冰湖相、冰河相和风成相沉积层序。在南美,海洋冰川(及部分大陆冰川)地层形成于沿会聚型板块边缘分布的弧前盆地(如Tarjia盆地)和一些大小不等的克拉通内部盆地(如Parana盆地)。在非洲南部的Karoo弧后前陆盆地和非洲中部的内克拉通裂谷盆地,发育受冰川作用影响的海相和半咸水沉积。在西澳大利亚板块西部拉张边缘的几个裂谷盆地中,堆积有巨厚的(2~5km)形成于寒冷气候条件下的含烃海相地层。
对于冈瓦纳冰期来说,最大的问题是,如何理解在晚奥陶世至石炭纪长达近100Ma的时间内,地球极地的大块陆地上没有明显的冰川存在。
7.新生代冰期(距今<55Ma)
大约在55Ma的古新世-始新世极热(Thermal Maximum)事件之后,地球开始冷却(图9-8),一系列构造事件显著影响了冰川的形成。此阶段的地球动力学大背景是盘古大陆的解体、漂离和大型陆块向北方更高纬度地区运动。40Ma前的北极重大冷却事件与南极洲冰川的首次出现时间大体一致。

图9-8 距今55Ma后的晚新生代冰期

(据Eyles,2008)
在地球两极,南极地区的冰川作用发生在距今约44Ma,环北极地区的冰川作用开始于距今45Ma(Moran et al.,2006)至距今约38~30Ma(Eldrett et al.,2007)。南极新生代冰川可能沿南极西部裂谷系(West Antarctic Rift System)开始形成,它是地球上面积最大的高位伸展地壳之一,其大小可与东非裂谷系相比拟。按照DeConto&Pollard(2003)的观点,浅水碳酸盐岩风化引起CO2浓度降低,促进了40Ma前开始的南极冰川的形成。到目前为止,最为广泛接受的模型是,北半球直到距今14Ma(Cecil&Edgar,2003)才形成大陆冰川。
晚始新世至渐新世沉积物中丰富的冰筏碎屑反映出在东格陵兰有孤立的崩裂冰山存在,这表明距今约45Ma时北极有一次重大的冷却事件(Eldrett et al.,2007)。之后的环北极冰川形成于中中新世过渡期,正好处于南极冰盖的主要膨胀期(Shevenell et al.,2004)。北冰洋的冰筏碎屑在距今14Ma时大量增加,标志着格陵兰冰川作用的开始,并一直持续到距今约5Ma上新世早期的一次显著的极热事件为止(温度上升高达10℃)(Ballantyne et al.,2006)。距今3Ma时,北欧和北美的冰盖开始有消有长,气温下降,结束了升温阶段。
在北大西洋地区,在始新世之后全球变冷的大背景下,区域性抬升(包括环北大西洋高原的整体抬升)可能是促使长年性雪原形成和保持的一个主要因素,最终在距今3.5Ma之后形成受米兰科维奇旋回支配的冰盖。在斯堪的纳维亚,上升的海洋夷平面(Marine Planation Surfaces)记录了沿挪威大陆边缘的抬升事件,它们与滨外不整合和冰川沉积物的输入可精确对比(Hendriks&Andriessen,2002;Huuse,2002;Hinderer&Einsele,2002;Stoker,2002)。
在西北太平洋地区,北美板块与Yakutat地块在5Ma后发生碰撞,加速了沿阿拉斯加湾边缘的快速抬升,形成了北美最高的山脉(Chugach-St.Elias),在北太平洋引发了冰川作用(Haug et al.,2005),同时伴随着大量冰成沉积物输入到阿拉斯加湾盆地,形成厚度超过5km的Yakataga组(Lagoe et al.,1993)。这些沿岸高地的所产生的障壁作用,引起北美北部内陆气温下降,形成永久冻土,并最终于距今3Ma后在北冰洋形成海洋冰盖(White et al.,1997;Westgate2003)。

地质历史时期的冰期

2. 科普,我们的地球为什么会反复地经历冰川期?

大家好,这里是前言论!
     
 就是我们现在知道的大冰期和间冰期了,而且我们还知道自从离我们最近的温暖的间冰期开启以后,已经过了大约1.1万年,根据以往地球 历史 的推测,这次的间冰期会持续1.5~2万年,这就意味着好日子可能不多了!也许我们的下下下下...一代们又得要重新穿上兽皮回到山洞里了。
  
 分为三个部分:
  
  一、大冰期是如何形成的。 
  
  二、地球生物如何受此影响,包括我们人类。 
  
  三、就是我们目前究竟面对的是什么样的情况? 
     
  第一点、为什么会有大冰期? 
  
 换句话说就是为什么地球会忽冷忽热?不用想,这肯定跟太阳有关系,因为地球上面的光和热都是太阳带来的,之所以太阳带给地球的热量总是在变,这不能完全怪太阳,因为地球也总是在变,地球的运行轨道、地轴的倾角和地轴的方向都在周期性的变化。
  
 发现这一点的是塞尔维亚科学家“米卢汀兰科维奇”,所以地球这三种周期性的循环变化叫做“米兰科维奇循环”。
     
 
  
     
 循环一,轨道变化,指的是地球围绕太阳公转的轨道会周期性的变得更圆或者变得椭圆,这是由于木星和土星的引力所造成的,周期大概在10万年左右,当地球公转的轨道变到最椭圆的时,远日点到太阳的距离会比近日点到太阳的距离多大约30%,这会加剧季节之间的气温变化。
     
 
  
  
 循环二,是地轴倾角的变化,地球的自转轴并非与公转平面垂直的,而是大约倾斜了23.5 ,而且这个倾角还不是一个固定的值,它是在22.1度到24.5度之间来回摇摆。
     
 尽管摆完一个周期的时间比较长,大约需要花上4万年,但同样它也在为极端的季节变化做岀贡献。
  
 循环三,地球自转轴方向的变化,尽管地球正在绕着自己的自转轴旋转,但其实地球的自转轴本身也在旋转,它围绕的是一根垂直于地球公转平面的轴旋转的,这听起来也许有点复杂,但如果你玩过陀螺的话,就能够很容易的明白了。
     
 这样的现象被称为“进动”,大约26,000年转上一圈,它可以将北半球温暖的近日点冬季转变为极其寒冷的远日点冬季。
  
  太阳到底有多少热量能够抵达地球,就取决于地球处在米兰科维奇循环中的哪个位置了。 
     
 
  
  
 当地球接触到的热量最少时,夏季的温度会降到最低,所以无法融化冬天里面留下来的积雪,而较多留下的积雪又会把更多的阳光给反射回太空当中,导致温度变得更低,同时寒冷的温度还会把大气中的保温层二氧化碳锁到海洋当中去,导致温度进一步下降,这样往复循环就是地球越来越冷,于是就迎来了大冰期。
     
  二、那么地球温度的交替变化会对居住在这里的生物造成怎样的影响? 
  
 别的不说,人类的繁盛就得要好好的感谢它,因为大约在11万年前,也就是上一次的冰期刚刚开始的时候,早期人类就开始 探索 欧洲亚洲和北美洲了。
     
 在面对急剧下降的温度时,人类被迫开始学会了在木材短缺的时候燃烧动物的骨头来取暖。
  
 为了使每人都能够获得更多的热量,人类还会在一起相互合作,用锋利的工具来捕猎猛犸象这种大型动物,吃掉肉之后人类会用兽骨做成骨针,然后将兽皮缝起来做成衣服,用智慧和创造力挺过严寒。
  
 三、最后如果我们真的马上就要面临一轮新的大冰期,人类是会不会也将遭遇威胁?
  
 至少现在看起来我们与其担心降温,不如担心升温,因为本来按照地球的计划,正准备给自己放降温了,但是万万没想到人类却非要让它升温了。
     
 自19世纪以来,随着化石燃料使用的增加,空气中的二氧化碳含量开始升高,全球气温不降反升,所以我们大概率是直接抵消了一次冰川期。
     
 但是这样的后果就是会迎来大面积的冰川融合导致海平面上升,到时候受灾难的又是我们人类了。

3. 地质史上的冰期是怎么回事

冰期:地球表面覆盖有大规模冰川的地质时期

地质史上的冰期是怎么回事

4. 地球地质史上发生冰河期的原因是什么

学者们提出过种种解释,但至今没有得到令人感到满意的答案。归纳起来,主要有天文学和地球物理学成因说。
天文学成因说
天文学成因说主要考虑太阳、其他行星与地球之间的相互关系。①太阳光度的周期变化影响地球的气候。太阳光度处于弱变化时,辐射量减少,地球变冷,乃至出现冰期气候。米兰科维奇认为,夏半年太阳辐射量的减少是导致冰期发生的可能因素。②地球黄赤交角的周期变化导致气温的变化。黄赤交角指黄道与天赤道的交角,它的变化主要受行星摄动的影响。当黄赤交角大时,冬夏差别增大,年平均日射率最小,使低纬地区处于寒冷时期,有利于冰川生成。
地球物理学成因说
地球物理学成因说影响因素较多,有大气物理方面的,也有地理地质方面的。
①大气透明度的影响。频繁的火山活动等使大气层饱含着火山灰,透明度低,减少了太阳辐射量,导致地球变冷。
②构造运动的影响。构造运动造成陆地升降、陆块位移、视极移动,改变了海陆分布和环流型式,可使地球变冷。云量、蒸发和冰雪反射的反馈作用,进一步使地球变冷,促使冰期来临。
③大气中CO2的屏蔽作用。CO2 能阻止或减低地表热量的损失。如果大气中CO2含量增加到今天的2~3倍,则极地气温将上升8~9℃;如果今日大气中的CO2含量减少55~60%,则中纬地带气温将下降4~5℃。在地质时期火山活动和生物活动使大气圈中CO2含量有很大变化,当CO2屏蔽作用减少到一定程度,则可能出现冰期。

5. 地球在漫长地质年代里经历了数次大冰期,大冰期之间为间冰期.如图为地质年代气温变化图,读图完成39~40

A.较温暖的时期称间冰期.间冰期,全球变暖会使全球降水量重新分配、冰川和冻土消融,海平面上升,故不符合题意;B.间冰期,全球变暖会使全球降水量重新分配,有的地区降水量减少,有的地区降水量增加,故不符合题意;C.较温暖的时期称间冰期.间冰期,全球变暖会使全球降水量重新分配、冰川和冻土消融,海平面上升,故正确;D.较温暖的时期称间冰期.间冰期,全球变暖,冰川融化,雪线上升,故不符合题意.故选:C.

地球在漫长地质年代里经历了数次大冰期,大冰期之间为间冰期.如图为地质年代气温变化图,读图完成39~40

6. 地球下一次冰川期是什么时候 冰河时期来临人类会消失吗

   地球上曾经有过几次被大规模冰川覆盖的冰河时期,这几段时期地球上鲜有生命体能够生存。如今距离第四次大冰川期已经过去了很久很久了,大家都在关心地球下一次冰川期是什么时候。如果冰川期再度来临,人类会不会就此灭绝呢?
            国外有科学家曾撰文表示,第五冰川期或将来临。早在上世纪九十年代的时候,就已经有科学家说过,地球已经进入一个新的冰川期了。
     在地球地质时代,至少经历了三次大冰期,它们分别是震旦纪大冰期、石炭二叠纪大冰期和第四纪大冰期。其中距离我们最近的就是第四纪大冰期了,第四纪大冰期大概从两百万年前开始,因为前面两次大冰期距离我们实在太遥远了,我们也不知道大冰期出现的时候,地球会变成什么样子,但是,专家对于第四纪大冰期却有很多争议。
            有人认为第四纪大冰期已经结束了,但是也有人认为第四纪大冰期还没结束,因为全球平均气温比以前很多时候都要寒冷。大冰期严重的时候,地球上到处都是覆盖着的冰川,就连我们现在所生活的城市,那些高耸的高楼大厦,在大冰期的时候,也只会被大面积的冰川覆盖。或许,一些低纬度的热带地区,可能不一定会结冰,但是,温度也会比现在要低很多。
            气候变化是周而复始的,一般来说,大冰期的时间跨度最多两三亿年,不管我们现在是处在第四纪大冰期的末尾,还是说第四纪大冰期已经结束了,下一次地球大冰川时期距离我们应该也还是比较遥远的。但是,若是照着目前人类活动对气候变化的影响来看,这中间的间隔会不会缩短,下一个冰期会不会提前到来,我们谁也说不准。

7. 冰川期是如何形成的

      冰期,地球表面覆盖有大规模冰川的地质时期,又称为冰川时期。两次冰期之间唯一相对温暖时期,称为间冰期。地球历史上曾发生过多次冰期,最近一次是第四纪冰期。 地球在40多亿年的历史中,曾出现过多次显著降温变冷,形成冰期。特别是在前寒武纪晚期、石炭纪至二叠纪和新生代的冰期都是持续时间很长的地质事件,通常称为大冰期。大冰期的时间尺度至少数百万年。大冰期内又有多次大幅度的气候冷暖交替和冰盖规模的扩展或退缩时期,这种扩展和退缩时期即为冰期和间冰期。
          冰川期是如何形成的:          学者们提出过种种解释,但至今没有得到令人感到满意的答案。归纳起来,主要有天文学和地球物理学成因说。
         天文学成因说
         天文学成因说主要考虑太阳、其他行星与地球之间的相互关系。①太阳光度的周期变化影响地球的气候。太阳光度处于弱变化时,辐射量减少,地球变冷,乃至出现冰期气候。米兰科维奇认为,夏半年太阳辐射量的减少是导致冰期发生的可能因素。②地球黄赤交角的周期变化导致气温的变化。黄赤交角指黄道与天赤道的交角,它的变化主要受行星摄动的影响。当黄赤交角大时,冬夏差别增大,年平均日射率最小,使低纬地区处于寒冷时期,有利于冰川生成。
         地球物理学成因说
         地球物理学成因说影响因素较多,有大气物理方面的,也有地理地质方面的。①大气透明度的影响。频繁的火山活动等使大气层饱含着火山灰,透明度低,减少了太阳辐射量,导致地球变冷。②构造运动的影响。构造运动造成陆地升降、陆块位移、视极移动,改变了海陆分布和环流型式,可使地球变冷。云量、蒸发和冰雪反射的反馈作用,进一步使地球变冷,促使冰期来临。③大气中CO2的屏蔽作用。CO2 能阻止或减低地表热量的损失。如果大气中CO2含量增加到今天的2~3倍,则极地气温将上升8~9℃;如果今日大气中的CO2含量减少55~60%,则中纬地带气温将下降4~5℃。在地质时期火山活动和生物活动使大气圈中CO2含量有很大变化,当CO2屏蔽作用减少到一定程度,则可能出现冰期。
         
          被记录在案的冰期: 
         新太古代大冰期
         是已知地球上最早的大冰期。以加拿大南部和美国大湖区西部的休伦群高干达组冰碛层为代表,该地层年代为距今27~23.5亿年前。另外,在南非、澳大利亚西部、印度都有这次冰期的产物。这次大冰期持续约4000万年。
         前寒武纪大冰期
         约距今9.5~6.15亿年前的一次影响广泛的大冰期。其遗迹除南极大陆尚未发现外,世界各大陆的许多地方都有保存,并多被非冰川沉积岩层所隔开,表明该冰期是多阶段性的。最早发现于苏格兰、挪威,此后在中国、澳大利亚、非洲、格陵兰和北美相继发现。以挪威北部芬马克的冰碛岩为其代表。在中国则为震旦系底部带擦痕的南沱冰碛层,主要分布在长江中下游等处。
         早古生代大冰期
         发生在奥陶纪晚期至志留纪早期的大冰期。约距今4.6~4.4亿年前,有人认为可能延续到泥盆纪晚期(3.6 亿年前)。其混碛岩见于法国、西班牙、加拿大、南美、北非及苏联新地岛。北非的冰碛岩露头极佳,并保存有若干冰川地貌的遗迹,如保存极好的冰壅构造、鼓丘、蛇形丘和砂楔等地形。
         晚古生代大冰期
         发生在石炭纪中期至二叠纪初期的一次冰期。当时全球气温普遍下降,形成大面积的冰盖与冰川,持续时间长达8000万年,是地球历史上影响最为深远的一次大冰期。见于印度、澳大利亚、南美、非洲及南极大陆的边缘。澳大利亚东南部和塔斯马尼亚岛是这次大冰期冰川作用最强的地区。
         晚新生代大冰期
         是地球历史上最近的一次大冰期。自新第三纪出现冰期与间冰期交替,一直延续至今。早在渐新世南极就开始出现冰盖,中新世中期冰盖已具规模,是最早进入冰期的地区。第四纪初期的冰期环境波及全球,中期达到最盛,所以晚新生代大冰期主要指第四纪冰期。当时,北半球有两个大冰盖,即斯堪的纳维亚冰盖和北美劳伦冰盖。前者的南界到达北纬50°,后者达北纬38°附近。此外,在中、低纬的一些高山区还发育了山麓冰川或小冰帽。大约在8000~10000年前,全球又普遍转暖,大量冰川和冰盖消失或收缩,地球进入冰后期。但是,诸大陆的冰川和冰盖并未完全消失。
         第四纪冰期
         第四纪冰期的划分如下:
         ①世界的划分。1901~1909年德国A.彭克和E.布吕克纳陆续发表《冰川时期的阿尔卑斯山》(3卷),书中根据欧洲阿尔卑斯山北麓多瑙河上游几级砂砾阶地的发育,提出该山区有4次冰期和3次间冰期,由老到新分别命名为恭兹(Günz)、民德(Mindel)、里斯(Riss)和玉木(Würm)冰期,恭兹-民德、民德-里斯和里斯-玉木间冰期。后来,B·艾伯尔和I·谢弗又补充了较老的多瑙(Donau)冰期和更老的拜伯(Biber)冰期。几十年来,阿尔卑斯冰期系统广为流传,为世界许多地区所采用,并作为典型冰期模式与世界各地对比。
         20世纪20年代,一些学者根据北欧斯堪的纳维亚冰盖边缘活动位置,将丹麦、荷兰、德国北部和波兰的终碛系列划出四次冰期和三次间冰期,自老到新为艾尔斯特(Elster)、萨勒(Saale)、瓦什(Warthe)、维塞尔(Weichsel)冰期,克罗默(Cromer)、霍尔斯坦(Holstein)和埃姆(Eem)间冰期。北美的冰期系列主要是按照北欧冰期划分  方法  确定的,根据冰碛物和终碛的位置划分出:维斯康辛、伊利诺安、堪山和内布拉斯加四个冰期及桑加蒙、雅莫斯和阿弗顿三个间冰期。世界其他一些地区也划分了本地区的第四纪冰期系列。后来,M·米兰科维奇建立的距今百万年以来太阳辐射变化曲线表明,至少可分出14~15个冰期轮回,即阿尔卑斯冰期系列中的每个冰期几乎都包含着2~3个冰期轮回。50年代发展起来的深海岩芯氧同位素研究,传统的阿尔卑斯冰期系统受到冲击,因为它不能完整地记录下气候与环境变化信息,相关的地层和地貌极易被曲解。而深海岩芯同位素可以相当完整地记录至今最为精确的更新世气候与环境变化资料,几乎不受岩芯地理位置的影响,其连续性和在全球的广泛性都是惟一可以与其他气候地层学系统的可靠资料作对比和验证的。据太平洋深海岩芯18O记录,大约90万年以来可以划分出23个18O阶段和10个完整的冰川周期(由B期到K期),期间被11个终至界线(由Ⅰ至Ⅺ)所分开。在时间序列上可与阿尔卑斯冰期系统相对比。
         黄土是陆地上广泛分布的更新世必层。自第四纪初就开始发育,几乎是连续沉积到今天。由于保存着完整的黄土-古土壤沉积序列、生物化石和气候信息,它是研究大陆第四纪环境变化的最理想的对象,同时还可以和深海沉积相对比。黄土大部分是冰期时的沉积物,在欧洲和北美多分布于古冰盖的外围。在冰盖退缩的间冰期里,气候湿润,发育了棕壤,形成黄土和棕壤交替沉积剖面,记录了冰期-间冰期的气候循环。欧洲的黄土-森林棕壤沉积层序可划分出若干沉积周期与亚周期,并可以与北欧冰期系列相对应。中国的黄土分布广,厚度可达410米。如今对陕西洛川剖面的研究表明,大约距今240万年以来,记录了11个古气候组,可与欧洲黄土沉积周期系列对比。其中距今90万年的黄土层序与海洋18O阶段1~23有较好的对应关系。
         ②中国的划分和表现形式。中国西部高山地区的冰期划分已为人们所公认,以研究较好的喜马拉雅山珠穆朗玛峰区北坡为例,第四纪冰期划分为:a.依据希夏邦马峰北坡附近的老冰碛平台确立的早更新世的希夏邦马冰期。b.依据珠穆朗玛峰西侧聂聂雄拉高平台的冰水-冰碛沉积确立的中更新世的聂聂雄拉冰期。c.在绒布河谷中基隆寺附近的残破漂砾群及上游绒布寺的终碛垅分别代表晚更新世早期的基隆寺阶段和较晚期的绒布寺阶段,这两个阶段构成了晚更新世的珠穆朗玛冰期,也有的学者将这两个阶段划为两个独立的冰期。
         关于中国东部第四纪冰期的问题,仍在争论中。1944年,李四光以庐山为样板,将中国东部第四纪冰期由老到新划分出鄱阳、大姑、庐山冰期,再加上1937年H.von费师孟提出的末次冰期──大理冰期,建立了中国东部第四纪冰期系列。对此,一些中外学者一直持有不同意见。80年代初,施雅风等提出:除太白山、长白山主峰区及台湾中央山脉等海拔3500米以上的高山存在第四纪冰川遗迹外,长江中下游山地、广西桂林、湖北神农架、北京西山、东北大兴安岭等都缺乏可靠的古冰川证据;中国东部和西部在第四纪冰期时的表现形式是不一样的,东部地区不具备发育成山岳冰川的水、热和地形条件,只是处于一个气候较寒冷的时期,李四光所确认的东部古冰川遗迹实非冰川成因,如把泥石流堆积误认为冰碛物等;东部地区第四纪冰期系列,除大理冰期外,其他冰期均缺乏根据。
         五段冰期
         约24亿至21亿年前——休伦冰期
         约8.5亿至6.35亿年前——成冰期
         约4.5亿至4.2亿年前——奥陶纪
         约3.6亿至2.6亿年前——石炭纪
         约258万年前——第四纪冰期
         冰期对全球的影响:
         冰期对全球的影响是显著的。
         1,大面积冰盖的存在改变了地表水体的分布。晚新生代大冰期时,水圈水分大量聚集于陆地而使全球海平面大约下降了100米。如果现今地表冰体全部融化,则全球海平面将会上升80~90米,世界上众多大城市和低地将被淹没。
         2,冰期时的大冰盖厚达数千米,使地壳的局部承受着巨大压力而缓慢下降,有的被压降100~200米,南极大陆的基底就被降于海平面以下。北欧随着第四纪冰盖的消失,地壳则缓慢在上升。这种地壳均衡运动至今仍在继续着。
         3,冰期改变了全球气候带的分布,导致大量喜暖性动植物种灭绝。
          冰期的标志: 
         冰期时期最重要的标志是全球性大幅度气温变冷,在中、高纬(包括极地)及高山区广泛形成大面积的冰盖和山岳冰川。由于水分由海洋向冰盖区转移,大陆冰盖不断扩大增厚,引起海平面大幅度下降。所以,冰期盛行时的气候表现为干冷。冰盖的存在和海陆形势变化,气候带也相应移动,大气环流和洋流都发生变化,这均直接影响动植物生长、演化和分布。
         第四纪冰期以后,距今约1万年以来的时期叫冰后期。此期气候仍有过多次低量级的冷暖波动,如距今4000~6000年期间曾出现的较明显的寒冷期,使全球冰川一度扩展前进,被称为新冰期。
         近一次较明显的小规模的冰川推进出现在13~14世纪至20世纪初(有的文献主要指16~19世纪),约在18世纪中至19世纪中期达到最盛,通称为小冰期。

冰川期是如何形成的

8. 冰期是地球上什么的地质时期

冰期(冰川时期)是地球上“地球表面覆盖有大规模冰川”的地质时期。而间冰期是地球上“两次冰期之间为一相对温暖”的地质时期。 

 

地球历史上曾发生过多次冰期,最近一次是第四纪冰期。地球在40多亿年的历史中,曾出现过多次显著降温变冷,形成冰期。特别是在前寒武纪晚期、石炭纪至二叠纪和新生代的冰期都是持续时间很长的地质事件,通常称为大冰期。

 

大冰期的时间尺度达107年~108年,大冰期内又有多次大幅度的气候冷暖交替和冰盖规模的扩展或退缩时期,这种扩展和退缩时期即为冰期和间冰期。

 

冰期有广义和狭义之分,广义的冰期就是大冰期,狭义的冰期是指比大冰期低一层次的冰期。

 

大冰期是指地球上气候寒冷,极地冰盖增厚、广布,中、低纬度地区有时也有强烈冰川作用的地质时期。大冰期中气候较寒冷的时期称冰期,较温暖的时期称间冰期。

 

大冰期、冰期和间冰期都是依据气候划分的地质时间单位。大冰期的持续时间相当地质年代单位的世或大于世,两个大冰期之间的时间间隔可以是几个纪,有人根据统计资料认为,大冰期的出现有1.5亿年的周期。冰期、间冰期的持续时间相当于地质年代单位的期。