BP神经网络算法的介绍

2024-05-05 22:39

1. BP神经网络算法的介绍

BP(Back Propagation)网络是1986年由Rumelhart和McCelland为首的科学家小组提出,是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一。BP网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程。它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小。BP神经网络模型拓扑结构包括输入层(input)、隐层(hide layer)和输出层(output layer)。

BP神经网络算法的介绍

2. BP算法、BP神经网络、遗传算法、神经网络这四者之间的关系

这四个都属于人工智能算法的范畴。其中BP算法、BP神经网络和神经网络
属于神经网络这个大类。遗传算法为进化算法这个大类。
神经网络模拟人类大脑神经计算过程,可以实现高度非线性的预测和计算,主要用于非线性拟合,识别,特点是需要“训练”,给一些输入,告诉他正确的输出。若干次后,再给新的输入,神经网络就能正确的预测对于的输出。神经网络广泛的运用在模式识别,故障诊断中。BP算法和BP神经网络是神经网络的改进版,修正了一些神经网络的缺点。
遗传算法属于进化算法,模拟大自然生物进化的过程:优胜略汰。个体不断进化,只有高质量的个体(目标函数最小(大))才能进入下一代的繁殖。如此往复,最终找到全局最优值。遗传算法能够很好的解决常规优化算法无法解决的高度非线性优化问题,广泛应用在各行各业中。差分进化,蚁群算法,粒子群算法等都属于进化算法,只是模拟的生物群体对象不一样而已。

3. 神经网络——BP算法

对于初学者来说,了解了一个算法的重要意义,往往会引起他对算法本身的重视。BP(Back Propagation,后向传播)算法,具有非凡的历史意义和重大的现实意义。
  
 1969年,作为人工神经网络创始人的明斯基(Marrin M insky)和佩珀特(Seymour Papert)合作出版了《感知器》一书,论证了简单的线性感知器功能有限,不能解决如“异或”(XOR )这样的基本问题,而且对多层网络也持悲观态度。这些论点给神经网络研究以沉重的打击,很多科学家纷纷离开这一领域,神经网络的研究走向长达10年的低潮时期。[1]
  
 1974年哈佛大学的Paul Werbos发明BP算法时,正值神经外网络低潮期,并未受到应有的重视。[2]
  
 1983年,加州理工学院的物理学家John Hopfield利用神经网络,在旅行商这个NP完全问题的求解上获得当时最好成绩,引起了轰动[2]。然而,Hopfield的研究成果仍未能指出明斯基等人论点的错误所在,要推动神经网络研究的全面开展必须直接解除对感知器——多层网络算法的疑虑。[1]
  
 真正打破明斯基冰封魔咒的是,David Rumelhart等学者出版的《平行分布处理:认知的微观结构探索》一书。书中完整地提出了BP算法,系统地解决了多层网络中隐单元连接权的学习问题,并在数学上给出了完整的推导。这是神经网络发展史上的里程碑,BP算法迅速走红,掀起了神经网络的第二次高潮。[1,2]
  
  因此,BP算法的历史意义:明确地否定了明斯基等人的错误观点,对神经网络第二次高潮具有决定性意义。 
  
 这一点是说BP算法在神经网络领域中的地位和意义。
  
  BP算法是迄今最成功的神经网络学习算法,现实任务中使用神经网络时,大多是在使用BP算法进行训练[2],包括最近炙手可热的深度学习概念下的卷积神经网络(CNNs)。 
  
  
 BP神经网络是这样一种神经网络模型,它是由一个输入层、一个输出层和一个或多个隐层构成,它的激活函数采用sigmoid函数,采用BP算法训练的多层前馈神经网络。
  
 BP算法全称叫作误差反向传播(error Back Propagation,或者也叫作误差逆传播)算法。其算法基本思想为:在2.1所述的前馈网络中,输入信号经输入层输入,通过隐层计算由输出层输出,输出值与标记值比较,若有误差,将误差反向由输出层向输入层传播,在这个过程中,利用梯度下降算法对神经元权值进行调整。
  
 BP算法中核心的数学工具就是微积分的 链式求导法则 。
  
                                                                                  
 
  
                                          
 
  
                                                                                                                                                                                                                                                  
 BP算法的缺点,首当其冲就是局部极小值问题。
  
 BP算法本质上是梯度下降,而它所要优化的目标函数又非常复杂,这使得BP算法效率低下。
  
  
 [1]、《BP算法的哲学思考》,成素梅、郝中华著
  
 [2]、《机器学习》,周志华著
  
 [3]、 Deep Learning论文笔记之(四)CNN卷积神经网络推导和实现  
  
 2016-05-13 第一次发布
  
 2016-06-04 较大幅度修改,完善推导过程,修改文章名
  
  
 2016-07-23 修改了公式推导中的一个错误,修改了一个表述错误

神经网络——BP算法

4. 神经网络BP算法求代码

输入节点数为3x3x5=45,输出节点数为3x3+2=11,隐节点数通过试凑法得出。
BP神经网络的Matlab代码见附件,修改节点数、增加归一化和反归一化过程即可。

BP算法,误差反向传播(Error Back Propagation, BP)算法。BP算法的基本思想是,学习过程由信号的正向传播与误差的反向传播两个过程组成。由于多层前馈网络的训练经常采用误差反向传播算法,人们也常把将多层前馈网络直接称为BP网络。
1)正向传播:输入样本->输入层->各隐层(处理)->输出层
注1:若输出层实际输出与期望输出(教师信号)不符,则转入2)(误差反向传播过程)
2)误差反向传播:输出误差(某种形式)->隐层(逐层)->输入层
其主要目的是通过将输出误差反传,将误差分摊给各层所有单元,从而获得各层单元的误差信号,进而修正各单元的权值(其过程,是一个权值调整的过程)。
注2:权值调整的过程,也就是网络的学习训练过程(学习也就是这么的由来,权值调整)。

5. BP神经网络算法的关键词

 BP算法是一种有监督式的学习算法,其主要思想是:输入学习样本,使用反向传播算法对网络的权值和偏差进行反复的调整训练,使输出的向量与期望向量尽可能地接近,当网络输出层的误差平方和小于指定的误差时训练完成,保存网络的权值和偏差。具体步骤如下:(1)初始化,随机给定各连接权[w],[v]及阀值θi,rt。(2)由给定的输入输出模式对计算隐层、输出层各单元输出bj=f(■wijai-θj) ct=f(■vjtbj-rt)式中:bj为隐层第j个神经元实际输出;ct为输出层第t个神经元的实际输出;wij为输入层至隐层的连接权;vjt为隐层至输出层的连接权。dtk=(ytk-ct)ct(1-ct) ejk=[■dtvjt] bj(1-bj)(3)选取下一个输入模式对返回第2步反复训练直到网络设输出误差达到要求结束训练。传统的BP算法,实质上是把一组样本输入/输出问题转化为一个非线性优化问题,并通过负梯度下降算法,利用迭代运算求解权值问题的一种学习方法,但其收敛速度慢且容易陷入局部极小,为此提出了一种新的算法,即高斯消元法。 2.1 改进算法概述此前有人提出:任意选定一组自由权,通过对传递函数建立线性方程组,解得待求权。本文在此基础上将给定的目标输出直接作为线性方程等式代数和来建立线性方程组,不再通过对传递函数求逆来计算神经元的净输出,简化了运算步骤。没有采用误差反馈原理,因此用此法训练出来的神经网络结果与传统算法是等效的。其基本思想是:由所给的输入、输出模式对通过作用于神经网络来建立线性方程组,运用高斯消元法解线性方程组来求得未知权值,而未采用传统BP网络的非线性函数误差反馈寻优的思想。2.2 改进算法的具体步骤对给定的样本模式对,随机选定一组自由权,作为输出层和隐含层之间固定权值,通过传递函数计算隐层的实际输出,再将输出层与隐层间的权值作为待求量,直接将目标输出作为等式的右边建立方程组来求解。现定义如下符号(见图1):x (p)输入层的输入矢量;y (p)输入层输入为x (p)时输出层的实际输出矢量;t (p)目标输出矢量;n,m,r分别为输入层、隐层和输出层神经元个数;W为隐层与输入层间的权矩阵;V为输出层与隐层间的权矩阵。具体步骤如下:(1)随机给定隐层和输入层间神经元的初始权值wij。(2)由给定的样本输入xi(p)计算出隐层的实际输出aj(p)。为方便起见将图1网络中的阀值写入连接权中去,令:隐层阀值θj=wnj,x(n)=-1,则:aj(p)=f(■wijxi(p)) (j=1,2…m-1)。(3)计算输出层与隐层间的权值vjr。以输出层的第r个神经元为对象,由给定的输出目标值tr(p)作为等式的多项式值建立方程,用线性方程组表示为:a0(1)v1r+a1(1)v2r+…+am(1)vmr=tr(1)a0(2)v1r+a1(2)v2r+…+am(2)vmr=tr(2) ……a0(p)v1r+a1(p)v2r+…+am(p)vmr=tr(p) 简写为: Av=T为了使该方程组有唯一解,方程矩阵A为非奇异矩阵,其秩等于其增广矩阵的秩,即:r(A)=r(A┊B),且方程的个数等于未知数的个数,故取m=p,此时方程组的唯一解为: Vr=[v0r,v2r,…vmr](r=0,1,2…m-1)(4)重复第三步就可以求出输出层m个神经元的权值,以求的输出层的权矩阵加上随机固定的隐层与输入层的权值就等于神经网络最后训练的权矩阵。 现以神经网络最简单的XOR问题用VC编程运算进行比较(取神经网络结构为2-4-1型),传统算法和改进BP算法的误差(取动量因子α=0.001 5,步长η=1.653)

BP神经网络算法的关键词

6. 深入理解BP神经网络

BP神经网络是一种多层的前馈神经网络,其主要的特点是:信号是前向传播的,而误差是反向传播的。具体来说,对于如下的只含一个隐层的神经网络模型:
  
 BP神经网络的过程主要分为两个阶段,第一阶段是信号的前向传播,从输入层经过隐含层,最后到达输出层;第二阶段是误差的反向传播,从输出层到隐含层,最后到输入层,依次调节隐含层到输出层的权重和偏置,输入层到隐含层的权重和偏置。
                                          
 神经网络的基本组成单元是神经元。神经元的通用模型如图所示,其中常用的激活函数有阈值函数、sigmoid函数和双曲正切函数。 
                                          
 神经元的输出为: 
                                          
 神经网络是将多个神经元按一定规则联结在一起而形成的网络,如图 所示。 
                                          
 从图 可以看出,一个神经网络包括输入层、隐含层(中间层)和输出层。输入层神经元个数与输入数据的维数相同,输出层神经元个数与需要拟合的数据个数相同,隐含层神经元个数与层数就需要设计者自己根据一些规则和目标来设定。在深度学习出现之前,隐含层的层数通常为一层,即通常使用的神经网络是3层网络。 
  
 BP网络采用的传递函数是非线性变换函数——Sigmoid函数(又称S函数)。其特点是函数本身及其导数都是连续的,因而在处理上十分方便。为什么要选择这个函数,等下在介绍BP网络的学习算法的时候会进行进一步的介绍。S函数有单极性S型函数和双极性S型函数两种,单极性S型函数定义如下:f(x)=1/1+e−x
  
 其函数曲线如图所示:
                                          
 双极性S型函数:f(x)=1−e−x/1+e−x
  
 
  
                                          
 使用S型激活函数时,输入:
                                          
 输出:
                                          
 输出的导数:
                                          
 使用S型激活函数时,BP网络的输出及其导数图形:
                                          
 根据S激活函数的图形:
  
 net在 -5~0 的时候导数的值为正,且导数的值逐渐增大, 说明此时f(x)在逐渐变大 且 变大的速度越来越快 
  
 net在 0~5  的时候导数的值为正,且导数的值逐渐减小, 说明此时f(x)在逐渐变大 但是 变大的速度越来越慢 
  
 对神经网络进行训练,我们应该尽量将net的值尽量控制在收敛比较快的范围内。
                                                                                                                                                                                                                                                                                                                                                                                                                  
 1.  定义一个BP神经网络的类,设置网络相关参数
                                          
 2.    实例化该神经网络,按下图被构建成一个输出3维,输出1维,带有3个隐藏层(每个隐藏层10个节点)的BP网络;(此处还可以随意扩展输入、输出维度和隐藏层相关系数)
                                          
 3.    初始化BP神经网络的时候,开始初始化各层网络节点的 权重、权重动量、误差初始值
                                          
 4.  引入学习训练数据;4组输入、输出数据迭代5000次
                                          
     5000次中不断向前逐层计算输出的节点数据
                                          
     并同时逐层计算误差反向修改权重值,直到迭代完毕;注意误差函数值必须呈现下降趋势
                                          
 5.  引入数据进行结果预测,将数据带回模型计算得结果;最终可知预测结果趋近于0.7
                                                                                  
 神经网络利用现有的数据找出输入与输出之间得权值关系(近似),然后利用这样的权值关系进行仿真,例如输入一组数据仿真出输出结果,当然你的输入要和训练时采用的数据集在一个范畴之内。例如预报天气:温度 湿度 气压等作为输入 天气情况作为输出利用历史得输入输出关系训练出神经网络,然后利用这样的神经网络输入今天的温度 湿度 气压等 得出即将得天气情况。同理,运用到自动化测试中,使用测试数据反映结果走向,bug数,质量问题等情况也可以做到提前预测的!
  
  附录:

7. BP神经网络方法

人工神经网络是近几年来发展起来的新兴学科,它是一种大规模并行分布处理的非线性系统,适用解决难以用数学模型描述的系统,逼近任何非线性的特性,具有很强的自适应、自学习、联想记忆、高度容错和并行处理能力,使得神经网络理论的应用已经渗透到了各个领域。近年来,人工神经网络在水质分析和评价中的应用越来越广泛,并取得良好效果。在这些应用中,纵观应用于模式识别的神经网络,BP网络是最有效、最活跃的方法之一。
BP网络是多层前向网络的权值学习采用误差逆传播学习的一种算法(Error Back Propagation,简称BP)。在具体应用该网络时分为网络训练及网络工作两个阶段。在网络训练阶段,根据给定的训练模式,按照“模式的顺传播”→“误差逆传播”→“记忆训练”→“学习收敛”4个过程进行网络权值的训练。在网络的工作阶段,根据训练好的网络权值及给定的输入向量,按照“模式顺传播”方式求得与输入向量相对应的输出向量的解答(阎平凡,2000)。
BP算法是一种比较成熟的有指导的训练方法,是一个单向传播的多层前馈网络。它包含输入层、隐含层、输出层,如图4-4所示。

图4-4 地下水质量评价的BP神经网络模型

图4-4给出了4层地下水水质评价的BP神经网络模型。同层节点之间不连接。输入信号从输入层节点,依次传过各隐含层节点,然后传到输出层节点,如果在输出层得不到期望输出,则转入反向传播,将误差信号沿原来通路返回,通过学习来修改各层神经元的权值,使误差信号最小。每一层节点的输出只影响下一层节点的输入。每个节点都对应着一个作用函数(f)和阈值(a),BP网络的基本处理单元量为非线性输入-输出的关系,输入层节点阈值为0,且f(x)=x;而隐含层和输出层的作用函数为非线性的Sigmoid型(它是连续可微的)函数,其表达式为
f(x)=1/(1+e-x) (4-55)
设有L个学习样本(Xk,Ok)(k=1,2,…,l),其中Xk为输入,Ok为期望输出,Xk经网络传播后得到的实际输出为Yk,则Yk与要求的期望输出Ok之间的均方误差为

区域地下水功能可持续性评价理论与方法研究

式中:M为输出层单元数;Yk,p为第k样本对第p特性分量的实际输出;Ok,p为第k样本对第p特性分量的期望输出。
样本的总误差为

区域地下水功能可持续性评价理论与方法研究

由梯度下降法修改网络的权值,使得E取得最小值,学习样本对Wij的修正为

区域地下水功能可持续性评价理论与方法研究

式中:η为学习速率,可取0到1间的数值。
所有学习样本对权值Wij的修正为

区域地下水功能可持续性评价理论与方法研究

通常为增加学习过程的稳定性,用下式对Wij再进行修正:

区域地下水功能可持续性评价理论与方法研究

式中:β为充量常量;Wij(t)为BP网络第t次迭代循环训练后的连接权值;Wij(t-1)为BP网络第t-1次迭代循环训练后的连接权值。
在BP网络学习的过程中,先调整输出层与隐含层之间的连接权值,然后调整中间隐含层间的连接权值,最后调整隐含层与输入层之间的连接权值。实现BP网络训练学习程序流程,如图4-5所示(倪深海等,2000)。

图4-5 BP神经网络模型程序框图

若将水质评价中的评价标准作为样本输入,评价级别作为网络输出,BP网络通过不断学习,归纳出评价标准与评价级别间复杂的内在对应关系,即可进行水质综合评价。
BP网络对地下水质量综合评价,其评价方法不需要过多的数理统计知识,也不需要对水质量监测数据进行复杂的预处理,操作简便易行,评价结果切合实际。由于人工神经网络方法具有高度民主的非线性函数映射功能,使得地下水水质评价结果较准确(袁曾任,1999)。
BP网络可以任意逼近任何连续函数,但是它主要存在如下缺点:①从数学上看,它可归结为一非线性的梯度优化问题,因此不可避免地存在局部极小问题;②学习算法的收敛速度慢,通常需要上千次或更多。
神经网络具有学习、联想和容错功能,是地下水水质评价工作方法的改进,如何在现行的神经网络中进一步吸取模糊和灰色理论的某些优点,建立更适合水质评价的神经网络模型,使该模型既具有方法的先进性又具有现实的可行性,将是我们今后研究和探讨的问题。

BP神经网络方法

8. BP神经网络算法的摘 要

BP神经网络算法是在BP神经网络现有算法的基础上提出的,是通过任意选定一组权值,将给定的目标输出直接作为线性方程的代数和来建立线性方程组,解得待求权,不存在传统方法的局部极小及收敛速度慢的问题,且更易理解。