如何理解 Black-Scholes 期权定价模型

2024-04-30 03:51

1. 如何理解 Black-Scholes 期权定价模型

Black-Scholes-Merton期权定价模型(Black-Scholes-Merton Option Pricing Model),即布莱克-斯克尔斯期权定价模型。
1997年10月10日,第二十九届诺贝尔经济学奖授予了两位美国学者,哈佛商学院教授罗伯特·默顿(Robert Merton)和斯坦福大学教授迈伦·斯克尔斯(Myron Scholes),同时肯定了布莱克的杰出贡献。
斯克尔斯与他的同事、已故数学家费雪·布莱克(Fischer Black)在70年代初合作研究出了一个期权定价的复杂公式。与此同时,默顿也发现了同样的公式及许多其它有关期权的有用结论。默顿扩展了原模型的内涵,使之同样运用于许多其它形式的金融交易。

如何理解 Black-Scholes 期权定价模型

2. 如何理解 Black-Scholes 期权定价模型

折叠B-S-M模型假设
1、股票价格随机波动并服从对数正态分布;
期权定价模型2、在期权有效期内,无风险利率和股票资产期望收益变量和价格波动率是恒定的;
3、市场无摩擦,即不存在税收和交易成本;
4、股票资产在期权有效期内不支付红利及其它所得(该假设可以被放弃);
5、该期权是欧式期权,即在期权到期前不可实施;
6、金融市场不存在无风险套利机会;
7、金融资产的交易可以是连续进行的;
8、可以运用全部的金融资产所得进行卖空操作。

3. Black-Scholes期权定价模型的推导运用

 B-S-M模型的推导是由看涨期权入手的,对于一项看涨期权,其到期的期值是:E[G]=E[max(ST-L,O)]其中,E[G]—看涨期权到期期望值ST—到期所交易金融资产的市场价值L—期权交割(实施)价到期有两种可能情况:1、如果ST>L,则期权实施以进帐(In-the-money)生效,且mAx(ST-L,O)=ST-L2、如果STL)-L)+(1-P)×O=P×(E[ST|ST>L]-L)其中:P—(ST>L)的概率E[ST|ST>L]—既定(ST>L)下ST的期望值将E[G]按有效期无风险连续复利rT贴现,得期权初始合理价格:C=P×E-rT×(E[ST|ST>L]-L)(*)这样期权定价转化为确定P和E[ST|ST>L]。首先,对收益进行定义。与利率一致,收益为金融资产期权交割日市场价格(ST)与现价(S)比值的对数值,即收益=1NSTS。由假设1收益服从对数正态分布,即1NSTS~N(μT,σT2),所以E[1N(STS]=μT,STS~EN(μT,σT2)可以证明,相对价格期望值大于EμT,为:E[STS]=EμT+σT22=EμT+σ2T2=EγT从而,μT=T(γ-σ22),且有σT=σT其次,求(ST>L)的概率P,也即求收益大于(LS)的概率。已知正态分布有性质:Pr06[ζ>χ]=1-N(χ-μσ)其中:ζ—正态分布随机变量χ—关键值μ—ζ的期望值σ—ζ的标准差。所以:P=Pr06[ST>1]=Pr06[1NSTS]>1NLS]=1N-1NLS2)TTNC4由对称性:1-N(D)=N(-D)P=N1NSL+(γ-σ22)TσTArS第三,求既定ST>L下ST的期望值。因为E[ST|ST]>L]处于正态分布的L到∞范围,所以,E[ST|ST]>=S·EγT·N(D1)N(D2)其中:D1=LNSL+(γ+σ22)TσTD2=LNSL+(γ-σ22)TσT=D1-σT最后,将P、E[ST|ST]>L]代入(*)式整理得B-S定价模型:C=S·N(D1)-L·E-γT·N(D2) 假设市场上某股票现价S为 164,无风险连续复利利率γ是0.0521,市场方差σ2为0.0841,那么实施价格L是165,有效期T为0.0959的期权初始合理价格计算步骤如下:①求D1:D1=[ln164/165+(0.052+0.0841/2)×0.0959]/√(0.0841×0.0959)=0.0327②求D2:D2=0.0327-√(0.0841×0.0959)=-0.057③查标准正态分布函数表,得:N(0.03)=0.5120 N(-0.06)=0.4761④求C:C=164×0.5120-165×E-0.0521×0.0959×0.4761=5.803因此理论上该期权的合理价格是5.803。如果该期权市场实际价格是5.75,那么这意味着该期权有所低估。在没有交易成本的条件下,购买该看涨期权有利可图。 B-S-M模型是看涨期权的定价公式,根据售出—购进平价理论(Put-callparity)可以推导出有效期权的定价模型,由售出—购进平价理论,购买某股票和该股票看跌期权的组合与购买该股票同等条件下的看涨期权和以期权交割价为面值的无风险折扣发行债券具有同等价值,以公式表示为:S+PE(S,T,L)=CE(S,T,L)+L(1+γ)-T移项得:PE(S,T,L)=CE(S,T,L)+L(1+γ)-T-S,将B-S-M模型代入整理得:P=L·E-γT·[1-N(D2)]-S[1-N(D1)]此即为看跌期权初始价格定价模型。

Black-Scholes期权定价模型的推导运用

4. Black-Scholes期权定价模型的模型内容

 1、股票价格随机波动并服从对数正态分布;2、在期权有效期内,无风险利率和股票资产期望收益变量和价格波动率是恒定的;3、市场无摩擦,即不存在税收和交易成本;4、股票资产在期权有效期内不支付红利及其它所得(该假设可以被放弃);5、该期权是欧式期权,即在期权到期前不可实施;6、金融市场不存在无风险套利机会;7、金融资产的交易可以是连续进行的;8、可以运用全部的金融资产所得进行卖空操作。 C=S·N(d1)-X·exp^(-r·T)·N(d2)其中:d1=[ln(S/X)+(r+σ^2)/2)T]/(σ√T)d2=d1-σ·√TC—期权初始合理价格X—期权执行价格S—所交易金融资产现价T—期权有效期r—连续复利计无风险利率σ—股票连续复利(对数)回报率的年度波动率(标准差)N(d1),N(d2)—正态分布变量的累积概率分布函数,在此应当说明两点:第一,该模型中无风险利率必须是连续复利形式。一个简单的或不连续的无风险利率(设为r0)一般是一年计息一次,而r要求为连续复利利率。r0必须转化为r方能代入上式计算。两者换算关系为:r=LN(1+r0)或r0=exp(r)-1例如r0=0.06,则r=LN(1+0.06)=0.0583,即100以583%的连续复利投资第二年将获106,该结果与直接用r0=0.06计算的答案一致。第二,期权有效期T的相对数表示,即期权有效天数与一年365天的比值。如果期权有效期为100天,则T=100/365=0.274。

5. Black-Scholes期权定价模型的产生影响

自B-S-M模型1973年首次在政治经济杂志(Journalofpo Litical Economy)发表之后,芝加哥期权交易所的交易商们马上意识到它的重要性,很快将B-S-M模型程序化输入计算机应用于刚刚营业的芝加哥期权交易所。该公式的应用随着计算机、通讯技术的进步而扩展。到今天,该模型以及它的一些变形已被期权交易商、投资银行、金融管理者、保险人等广泛使用。衍生工具的扩展使国际金融市场更富有效率,但也促使全球市场更加易变。新的技术和新的金融工具的创造加强了市场与市场参与者的相互依赖,不仅限于一国之内还涉及他国甚至多国。结果是一个市场或一个国家的波动或金融危机极有可能迅速的传导到其它国家乃至整个世界经济之中。我国金融体制不健全、资本市场不完善,但是随着改革的深入和向国际化靠拢,资本市场将不断发展,汇兑制度日渐完善,企业也将拥有更多的自主权从而面临更大的风险。因此,对规避风险的金融衍生市场的培育是必需的,对衍生市场进行探索也是必要的,我们才刚刚起步。

Black-Scholes期权定价模型的产生影响

6. 关于Black-Scholes期权定价模型中重要参数的问题

可以为负数。

从数学的角度来看,公式里的N(d1),也就是delta,是正态分布的累计概率分布函数。我们知道看涨期权的delta可以取到(0,1)之间的任何值,所以d1可以取到实数轴上的任意值。

例如,一个OTM的看涨期权,它的delta小于0.5,也就是N(d1)小于0.5。对于一个正态分布累计概率分布函数f(x)来说,只有x小于零时f(x)才小于0.5

d2是d1减去一个正数,如果d1本身是负数的话,d2一定是负数。因此d1和d2都可以为负数。

7. 如何理解 Black-Scholes 期权定价模型

二项期权定价模型(binomal option price model,SCRR Model,BOPM)  Black-Scholes期权定价模型 虽然有许多优点, 但是它的推导过程难以为人们所接受。在1979年, 罗斯等人使用一种比较浅显的方法设计出一种期权的定价模型, 称为二项式模型(Binomial Model)或二叉树法(Binomial tree)。

如何理解 Black-Scholes 期权定价模型

最新文章
热门文章
推荐阅读