纳米材料是胶体吗?

2024-05-06 09:27

1. 纳米材料是胶体吗?

纳米材料不是胶体。
纳米材料直径一般是1-100nm,胶体是一种体系,纳米材料只是一种分散质,没有形成体系 ,所以不是胶体。
纳米科技实际上涵盖了一切在纳米范围的物理、化学的技术和工艺,说它包罗万象也不算过分。用纳米材料制作的器材重量更轻、硬度更强、寿命更长、维修费更低、设计更方便。利用纳米材料还可以制作出特定性质的材料或自然界不存在的材料,制作出生物材料和仿生材料。


体积效应
当纳米粒子的尺寸与传导电子的德布罗意波相当或更小时,周期性的边界条件将被破坏,磁性、内压、光吸收、热阻、化学活性、催化性及熔点等都较普通粒子发生了很大的变化,这就是纳米粒子的体积效应。纳米粒子的以下几个方面效应及其多方面的应用均基于它的体积效应。
例如,纳米粒子的熔点可远低于块状本体,此特性为粉粉冶金工业提供了新工艺;利用等离子共振频移随颗粒尺寸变化的性质,可以改变颗粒尺寸,控制吸收的位移,制造具有一种频宽的微波吸收纳米材料,用于电磁屏蔽,隐形飞机等。

纳米材料是胶体吗?

2. 纳米材料是胶体吗

 纳米材料不属于胶体。1.纳米材料是三个几何维度之中有一个维度在纳米尺度的一种特殊形态的材料。2.胶体是一种体系,是一种分散质粒子直径介于粗分散体系和溶液之间的一类分散体系。如果从两者之间的并集的角度出发,纳米材料只是分散质,它分散在分散剂中才是胶体。
     
   纳米材料制备方法   (1)惰性气体下蒸发凝聚法。通常由具有清洁表面的、粒度为1-100nm的微粒经高压成形而成,纳米陶瓷还需要烧结。国外用上述惰性气体蒸发和真空原位加压方法已研制成功多种纳米固体材料,包括金属和合金,陶瓷、离子晶体、非晶态和半导体等纳米固体材料。我国也成功的利用此方法制成金属、半导体、陶瓷等纳米材料。
   (2)化学方法:1水热法,包括水热沉淀、合成、分解和结晶法,适宜制备纳米氧化物;2水解法,包括溶胶-凝胶法、溶剂挥发分解法、乳胶法和蒸发分离法等。
   (3)综合方法。结合物理气相法和化学沉积法所形成的制备方法。其他一般还有球磨粉加工、喷射加工等方法。

3. 什么是纳米材料

什么是神奇的纳米材料

什么是纳米材料

4. 什么是纳米硅胶?

杯子材料为纳米硅胶特点(常丰硅胶提供)
1.安全的硅胶材质:与普通的塑料材质奶瓶不同的是硅胶奶瓶,奶嘴均采用食品级硅胶材料,安全无毒,且不利于细菌的滋生,耐热达320度,高温下亦不会释放致癌物质BPA(双酚A)带给你的宝宝更多安全、健康.但也不排除有些不良商家用劣质材料生产出来的劣质产品充当良品,骗取消费者 购买,所以买的时候要去正规商家要货.奶粉都有假,何况区区一个奶瓶呢?
2、婴儿所喜欢的柔软奶瓶,硅胶奶瓶柔软如皮肤的感觉会对婴儿的情绪起到稳定的作用.
3、方便清洗,硅胶奶瓶可360度翻转清洗,不留死角.
4、无异味,硅胶奶瓶石无色无味无毒的硅胶原料制作,食物或者液体放久了不会产生塑料或者橡胶容器的那种味道,可以保持新鲜度.
5、便于携带,外出时可把奶嘴,奶瓶(硅胶部分)分离后放在一起,减小体积,方便携带.
6、持久耐用,硅胶奶瓶可长期使用,柔软好拿不易摔破,并只需要更换奶嘴便可.

5. 什么是纳米材料

纳米材料又称为超微颗粒材料,是指在三维空间中至少有一维处于纳米尺寸(0.1-100 nm)或由它们作为基本单元构成的材料,这大约相当于10~100个原子紧密排列在一起的尺度。由纳米粒子(nano particle)组成。纳米粒子也叫超微颗粒,一般是指尺寸在0.1~100nm间的粒子,是处在原子簇和宏观物体交界的过渡区域,从通常的关于微观和宏观的观点看,这样的系统既非典型的微观系统亦非典型的宏观系统,是一种典型的介观系统,它具有表面效应、小尺寸效应和宏观量子隧道效应。
当人们将宏观物体细分成超微颗粒(纳米级)后,它将显示出许多奇异的特性,即它的纳米材料在光学、热学、电学、磁学、力学以及化学方面的性质和大块固体时相比将会有显著的不同,可以概括为五大效应:
体积效应
当纳米粒子的尺寸与传导电子的德布罗意波相当或更小时,周期性的边界条件将被破坏,磁性、内压、光吸收、热阻、化学活性、催化性及熔点等都较普通粒子发生了很大的变化,这就是纳米粒子的体积效应。纳米粒子的以下几个方面效应及其多方面的应用均基于它的体积效应。例如,纳米粒子的熔点可远低于块状本体,此特性为粉粉冶金工业提供了新工艺;利用等离子共振频移随颗粒尺寸变化的性质,可以改变颗粒尺寸,控制吸收的位移,制造具有一种频宽的微波吸收纳米材料,用于电磁屏蔽,隐形飞机等。

表面效应
表面效应是指纳米粒子表面原子与总原子数之比随着粒径的变小而急剧增大后所引起的性质上的变化。表9-2给出了纳米粒子尺寸与表面原子数的关系。
随粒径减小,表面原子数迅速增加。另外,随着粒径的减小,纳米粒子的表面积、表面能的都迅速增加。这主要是粒径越小,处于表面的原子数越多。表面原子的晶体场环境和结合能与内部原子不同。表面原子周围缺少相邻的原子,有许多悬空键,具有不饱和性质,易于其他原子想结合而稳定下来,因而表现出很大的化学和催化活性。

量子尺寸
粒子尺寸下降到一定值时,费米能级接近的电子能级由准连续能级变为分立能级的现象称为量子尺寸效应。Kubo采用一电子模型求得金属超微粒子的能级间距为:4Ef/3N
式中Ef为费米势能,N为微粒中的原子数。宏观物体的N趋向于无限大,因此能级间距趋向于零。纳米粒子因为原子数有限,N值较小,导致有一定的值,即能级间距发生分裂。半导体纳米粒子的电子态由体相材料的连续能带随着尺寸的减小过渡到具有分立结构的能级,表现在吸收光谱上就是从没有结构的宽吸收带过渡到具有结构的吸收特性。在纳米粒子中处于分立的量子化能级中的电子的波动性带来了纳米粒子一系列特性,如高的光学非线性,特异的催化和光催化性质等。

量子隧道
微观粒子具有贯穿势垒的能力称为隧道效应。人们发现一些宏观量,例如微颗粒的磁化强度、量子相干器件的磁通量以及电荷等亦具有隧道效应,它们可以穿越宏观系统的势垒产生变化,故称为宏观的量子隧道效应。用此概念可定性解释超细镍微粒在低温下保持超顺磁性等。

介电限域
纳米粒子的介电限域效应较少不被注意到。实际样品中,粒子被空气﹑聚合物﹑玻璃和溶剂等介质所包围,而这些介质的折射率通常比无机半导体低。光照射时,由于折射率不同产生了界面,邻近纳米半导体表面的区域﹑纳米半导体表面甚至纳米粒子内部的场强比辐射光的光强增大了。这种局部的场强效应,对半导体纳米粒子的光物理及非线性光学特性有直接的影响。对于无机-有机杂化材料以及用于多相反应体系中光催化材料,介电限域效应对反应过程和动力学有重要影响
上述的小尺寸效应﹑表面效应﹑量子尺寸效应﹑宏观量子隧道效应和介电限域应都是纳米微粒和纳米固体的基本特征,这一系列效应导致了纳米材料在熔点﹑蒸气压﹑光学性质﹑化学反应性﹑磁性﹑超导及塑性形变等许多物理和化学方面都显示出特殊的性能。它使纳米微粒和纳米固体呈现许多奇异的物理﹑化学性质。

什么是纳米材料

6. 什么是纳米生物复合材料?

从材料学角度来看,生物体及其多数组织均可视为由各种基质材料构成的复合材料。具体来看,生物体内以无机-有机纳米生物复合材料最为常见,如骨骼、牙齿等就是由羟基磷灰石纳米晶体和有机高分子基质等构成的纳米生物复合材料。人们通过仿生矿化方法制备纳米生物复合材料,获得了优于常规材料的力学性能。
按照生物矿化过程原理,美国科学家找到了一种两亲性肽分子,该两亲分子一端为亲水的精氨酸-甘氨酸-天冬氨酸(RGD),另一端含有磷酰化的氨基酸残基,亲水的RGD序列有利于材料与细胞的粘连,而磷酰化的氨基酸残基可与钙离子相互作用。此两亲性肽分子能组装成纳米纤维以期促进生物矿化,使之成为模板指导羟基磷灰石(HA)结晶生长。此两亲分子纳米纤维溶液可形成类似于骨的胶原纤维基质的凝胶,因此可将疑胶注射至骨缺损处作为生成新骨组织的基质。研究表明将凝胶置于含酸和磷酸盐离子的溶液中,20min后体系仿生矿化,HA结晶沿纤维生长,转变成羟基磷灰石-肽复合材料,该纳米生物复合材料坚硬如真骨。
清华大学研究开发的纳米级羟基磷灰石-胶原复合物在组成上模仿了天然骨基质中无机和有机成分,其纳米级的做结构类似于天然骨基质。多孔的纳米羟基磷灰石-胶原复合物形成的三维支架为成骨细胞提供了与体内相似的微环境。细胞在该支架上能很好地生长并能分泌骨基质。体外及动物实验表明,此种羟基磷灰石-胶原复合物是良好的竹修复纳米生物材料。

7. 什么是纳米生物复合材料?

从材料学角度来看,生物体及其多数组织均可视为由各种基质材料构成的复合材料。具体来看,生物体内以无机-有机纳米生物复合材料最为常见,如骨骼、牙齿等就是由羟基磷灰石纳米晶体和有机高分子基质等构成的纳米生物复合材料。人们通过仿生矿化方法制备纳米生物复合材料,获得了优于常规材料的力学性能。


按照生物矿化过程原理,美国科学家找到了一种两亲性肽分子,该两亲分子一端为亲水的精氨酸-甘氨酸-天冬氨酸(RGD),另一端含有磷酰化的氨基酸残基,亲水的RGD序列有利于材料与细胞的粘连,而磷酰化的氨基酸残基可与钙离子相互作用。此两亲性肽分子能组装成纳米纤维以期促进生物矿化,使之成为模板指导羟基磷灰石(HA)结晶生长。此两亲分子纳米纤维溶液可形成类似于骨的胶原纤维基质的凝胶,因此可将疑胶注射至骨缺损处作为生成新骨组织的基质。研究表明将凝胶置于含酸和磷酸盐离子的溶液中,20min后体系仿生矿化,HA结晶沿纤维生长,转变成羟基磷灰石-肽复合材料,该纳米生物复合材料坚硬如真骨。


清华大学研究开发的纳米级羟基磷灰石-胶原复合物在组成上模仿了天然骨基质中无机和有机成分,其纳米级的做结构类似于天然骨基质。多孔的纳米羟基磷灰石-胶原复合物形成的三维支架为成骨细胞提供了与体内相似的微环境。细胞在该支架上能很好地生长并能分泌骨基质。体外及动物实验表明,此种羟基磷灰石-胶原复合物是良好的竹修复纳米生物材料。

什么是纳米生物复合材料?

8. 什么是纳米材料

1纳米=10负九次方米 1-100纳米尺度的材料 就是纳米材料 纳米材料有合成方法 。其实纳米材料未必是人造的,在自然界中早以有许多的纳米材料,比如在水上行走的一小昆虫其脚是有纳米中空的小管排列组成的,是双疏性材料(疏水和疏油)能实现其在水上行走   
北极熊其皮毛是两层中空的纳米管组成 且层间有空隙因空气的传热系数很低就实现了保暖的功能

请采纳